Issues

 / 

2000

 / 

May

  

Reviews of topical problems


Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth’s inner core

 a,  b
a Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors’ new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth’s core reveals that the Earth’s outer core is a very viscous melt with viscosity values ranging from 102 Pa s to 1011 Pa s depending on the depth. The Earth’s inner core is presumably an ultraviscous (>1011 Pa s) glass-like liquid — in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study.

Fulltext pdf (906 KB)
Fulltext is also available at DOI: 10.1070/PU2000v043n05ABEH000682
PACS: 61.25.Mv, 61.43.−j, 62.50.+p, 66.20.+d, 91.35.Ed (all)
DOI: 10.1070/PU2000v043n05ABEH000682
URL: https://ufn.ru/en/articles/2000/5/c/
000165080500003
Citation: Brazhkin V V, Lyapin A G "Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core" Phys. Usp. 43 493–508 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бражкин В В, Ляпин А Г «Универсальный рост вязкости металлических расплавов в мегабарном диапазоне давлений: стеклообразное состояние внутреннего ядра Земли» УФН 170 535–551 (2000); DOI: 10.3367/UFNr.0170.200005c.0535

References (126) Cited by (61) ↓ Similar articles (20)

  1. Skachkov V O, Berezhna O R, Karpenko H V 99 (2024)
  2. Kondratyuk N D, Pisarev V V Uspekhi Fizicheskikh Nauk 193 437 (2023)
  3. [Kondratyuk N D, Pisarev V V Phys. Usp. 66 410 (2023)]
  4. İbrahimoğlu B, İbrahimoğlu B Critical States at Phase Transitions of Pure Substances Chapter 13 (2022) p. 161
  5. İBRAHİMOĞLU Beycan, YİLMAZOGLU Zeki et al 37 1939 (2022)
  6. Kontorovich V M 47 596 (2021)
  7. Norman H E, Saitov I M Uspekhi Fizicheskikh Nauk 191 1153 (2021) [Norman G E, Saitov I M Phys.-Usp. 64 1094 (2021)]
  8. Dmitriev A N, Pakharukov Yu V Izvestiâ Vysših Učebnyh Zavedenij. Neftʹ I Gaz (2) 39 (2021)
  9. Schmelzer J W P, Tropin T V Thermochimica Acta 677 42 (2019)
  10. Menshikova S G, Shirinkina I G et al Journal Of Crystal Growth 525 125206 (2019)
  11. Cao Q-L, Tu F et al 126 (10) (2019)
  12. Bair S High Pressure Rheology for Quantitative Elastohydrodynamics (2019) p. 259
  13. Savinykh A S, Garkushin G V et al High Temp 56 685 (2018)
  14. Kanel’ G I, Savinykh A S et al High Temp 55 365 (2017)
  15. Cao Q-L, Wang P-P et al 7 (2) (2017)
  16. Cao Q ‐L, Wang P ‐P JGR Solid Earth 122 3351 (2017)
  17. Sun H Y, Kang D et al 2 287 (2017)
  18. Zhu T Journal Of Asian Earth Sciences 132 103 (2016)
  19. Norman G E, Saitov I M J. Phys.: Conf. Ser. 774 012015 (2016)
  20. Singh Ya (AIP Conference Proceedings) Vol. 1728 (2016) p. 020693
  21. Boehler R, Ross M Treatise on Geophysics (2015) p. 573
  22. Cao Q-L, Shao Ju-X et al 117 (13) (2015)
  23. 汪 盼 CMP 04 134 (2015)
  24. Norman G E, Saitov I M, Stegailov V V Contrib. Plasma Phys. 55 215 (2015)
  25. Mohazzabi P, Skalbeck J D International Journal Of Geophysics 2015 1 (2015)
  26. Belashchenko D K Geochem. Int. 52 456 (2014)
  27. Cao Q-L, Wang P-P et al 140 (11) (2014)
  28. Pikin S A Crystallogr. Rep. 58 308 (2013)
  29. Belashchenko D K Phys.-Usp. 56 1176 (2013)
  30. Fomin Yu D, Brazhkin V V, Ryzhov V N Phys. Rev. E 86 (1) (2012)
  31. Pikin S A Crystallogr. Rep. 57 393 (2012)
  32. Cormier V F, Attanayake Ja, He K Physics Of The Earth And Planetary Interiors 188 163 (2011)
  33. Fragiadakis D, Roland C M Phys. Rev. E 83 (3) (2011)
  34. Pikin S A, Gorkunov M V, Kondratov A V Crystallogr. Rep. 55 638 (2010)
  35. Starikov S V, Stegailov V V Phys. Rev. B 80 (22) (2009)
  36. Pikin S A Jetp Lett. 89 642 (2009)
  37. Chinese J Of Geophysics 52 311 (2009)
  38. Cormier V F 179 374 (2009)
  39. Smylie D E, Brazhkin V V, Palmer A Uspekhi Fizicheskikh Nauk 179 91 (2009) [Smylie D E, Brazhkin V V, Palmer A Phys.-Usp. 52 79 (2009)]
  40. Yi-Lei L, Fu-Sheng L et al Chinese Phys. Lett. 26 038301 (2009)
  41. Burmin V Yu Dokl. Earth Sc. 419 316 (2008)
  42. Belashchenko D K, Kravchunovskaya N E, Ostrovski O I Inorg Mater 44 248 (2008)
  43. Ojovan M I Advances In Condensed Matter Physics 2008 1 (2008)
  44. Brazhkin V V J. Phys.: Condens. Matter 20 244102 (2008)
  45. Tribology And Interface Engineering Series Vol. High-Pressure Rheology for Quantitative ElastohydrodynamicsChapter 9 The glass transition and related transitions in liquids under pressure54 (2007) p. 183
  46. Brazhkin V V, Lyapin A G et al J. Phys.: Condens. Matter 19 246104 (2007)
  47. Brazhkin V V, Funakoshi K et al Phys. Rev. Lett. 99 (24) (2007)
  48. Boehler R, Ross M Treatise on Geophysics (2007) p. 527
  49. Belashchenko D K, Kuskov O L, Ostrovski O I Inorg Mater 43 998 (2007)
  50. Belashchenko D K Russ. J. Phys. Chem. 80 758 (2006)
  51. Bair S, Gordon P Solid Mechanics And Its Applications Vol. IUTAM Symposium on Elastohydrodynamics and Micro-elastohydrodynamicsRheological Challenges and Opportunities for EHL134 Chapter 2 (2006) p. 23
  52. Errandonea D Physica B: Condensed Matter 357 356 (2005)
  53. Shen G, Prakapenka V B et al Phys. Rev. Lett. 92 (18) (2004)
  54. Mineev V N, Funtikov A I Uspekhi Fizicheskikh Nauk 174 727 (2004)
  55. Shen G, Rivers M L et al Physics Of The Earth And Planetary Interiors 143-144 481 (2004)
  56. Ross M, Yang L H, Boehler R Phys. Rev. B 70 (18) (2004)
  57. Errandonea D, Somayazulu M et al J. Phys.: Condens. Matter 15 7635 (2003)
  58. Shen G, Prakapenka V B et al 74 3021 (2003)
  59. Zharov V E, Pasynok S L International Association Of Geodesy Symposia Vol. Vistas for Geodesy in the New MillenniumImprovement of the Earth nutation theory by taking into account the atmosphere and viscosity of the liquid core125 Chapter 75 (2002) p. 451
  60. Zharov V E, Pasynok S L Astron. Rep. 45 908 (2001)
  61. Skripov V P, Faizullin M Z Dokl. Phys. 46 403 (2001)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions