Issues

 / 

2000

 / 

May

  

Reviews of topical problems


Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth’s inner core

 a,  b
a Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation
b Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation

Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors’ new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth’s core reveals that the Earth’s outer core is a very viscous melt with viscosity values ranging from 102 Pa s to 1011 Pa s depending on the depth. The Earth’s inner core is presumably an ultraviscous (>1011 Pa s) glass-like liquid — in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study.

Fulltext is available at IOP
PACS: 61.25.Mv, 61.43.−j, 62.50.+p, 66.20.+d, 91.35.Ed (all)
DOI: 10.1070/PU2000v043n05ABEH000682
URL: https://ufn.ru/en/articles/2000/5/c/
Citation: Brazhkin V V, Lyapin A G "Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core" Phys. Usp. 43 493–508 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бражкин В В, Ляпин А Г «Универсальный рост вязкости металлических расплавов в мегабарном диапазоне давлений: стеклообразное состояние внутреннего ядра Земли» УФН 170 535–551 (2000); DOI: 10.3367/UFNr.0170.200005c.0535

References (126) Cited by (54) ↓ Similar articles (20)

  1. Kontorovich V M Low Temperature Physics 47 596 (2021)
  2. Dmitriev A N, Pakharukov Yu V Izvestiâ Vysših Učebnyh Zavedenij. Neftʹ I Gaz (2) 39 (2021)
  3. Norman H E, Saitov I M Uspekhi Fizicheskikh Nauk 191 1153 (2021)
  4. Cao Q-L, Tu F et al J. Appl. Phys. 126 105108 (2019)
  5. Menshikova S G, Shirinkina I G et al Journal Of Crystal Growth 525 125206 (2019)
  6. Bair S High Pressure Rheology for Quantitative Elastohydrodynamics (2019) p. 259
  7. Schmelzer J W P, Tropin T V Thermochimica Acta 677 42 (2019)
  8. Savinykh A S, Garkushin G V et al High Temp 56 685 (2018)
  9. Cao Q -L, Wang P -P J. Geophys. Res. Solid Earth 122 3351 (2017)
  10. Cao Q-L, Wang P-P et al AIP Advances 7 025115 (2017)
  11. Kanel’ G I, Savinykh A S et al High Temp 55 365 (2017)
  12. Sun H Y, Kang D et al Matter And Radiation At Extremes 2 287 (2017)
  13. Zhu T Journal Of Asian Earth Sciences 132 103 (2016)
  14. Singh Ya (AIP Conference Proceedings) Vol. 1728 (2016) p. 020693
  15. Norman G E, Saitov I M J. Phys.: Conf. Ser. 774 012015 (2016)
  16. Boehler R, Ross M Treatise on Geophysics (2015) p. 573
  17. 汪 盼 CMP 04 134 (2015)
  18. Mohazzabi P, Skalbeck J D International Journal Of Geophysics 2015 1 (2015)
  19. Norman G E, Saitov I M, Stegailov V V Contrib. Plasma Phys. 55 215 (2015)
  20. Belashchenko D K Geochem. Int. 52 456 (2014)
  21. Cao Q-L, Wang P-P et al The Journal Of Chemical Physics 140 114505 (2014)
  22. Pikin S A Crystallogr. Rep. 58 308 (2013)
  23. Belashchenko D K Phys.-Usp. 56 1176 (2013)
  24. Fomin Yu D, Brazhkin V V, Ryzhov V N Phys. Rev. E 86 (1) (2012)
  25. Pikin S A Crystallogr. Rep. 57 393 (2012)
  26. Cormier V F, Attanayake Ja, He K Physics Of The Earth And Planetary Interiors 188 163 (2011)
  27. Fragiadakis D, Roland C M Phys. Rev. E 83 (3) (2011)
  28. Pikin S A, Gorkunov M V, Kondratov A V Crystallogr. Rep. 55 638 (2010)
  29. Smylie D E, Brazhkin V V, Palmer A Uspekhi Fizicheskikh Nauk 179 91 (2009) [Smylie D E, Brazhkin V V, Palmer A Phys.-Usp. 52 79 (2009)]
  30. Starikov S V, Stegailov V V Phys. Rev. B 80 (22) (2009)
  31. Pikin S A Jetp Lett. 89 642 (2009)
  32. Yi-Lei L, Fu-Sheng L et al Chinese Phys. Lett. 26 038301 (2009)
  33. Cormier V F 179 374 (2009)
  34. SUN He-Ping, CUI Xiao-Ming et al Chinese J. Geophys. 52 311 (2009)
  35. Belashchenko D K, Kravchunovskaya N E, Ostrovski O I Inorg Mater 44 248 (2008)
  36. Ojovan M I Advances In Condensed Matter Physics 2008 1 (2008)
  37. Burmin V Yu Dokl. Earth Sc. 419 316 (2008)
  38. Brazhkin V V J. Phys.: Condens. Matter 20 244102 (2008)
  39. Boehler R, Ross M Treatise on Geophysics (2007) p. 527
  40. Tribology And Interface Engineering Series Vol. High-Pressure Rheology for Quantitative ElastohydrodynamicsChapter 9 The glass transition and related transitions in liquids under pressure54 (2007) p. 183
  41. Brazhkin V V, Lyapin A G et al J. Phys.: Condens. Matter 19 246104 (2007)
  42. Brazhkin V V, Funakoshi K et al Phys. Rev. Lett. 99 (24) (2007)
  43. Belashchenko D K, Kuskov O L, Ostrovski O I Inorg Mater 43 998 (2007)
  44. Bair S, Gordon P Solid Mechanics And Its Applications Vol. IUTAM Symposium on Elastohydrodynamics and Micro-elastohydrodynamicsRheological Challenges and Opportunities for EHL134 Chapter 2 (2006) p. 23
  45. Belashchenko D K Russ. J. Phys. Chem. 80 758 (2006)
  46. Errandonea D Physica B: Condensed Matter 357 356 (2005)
  47. Mineev V N, Funtikov A I Uspekhi Fizicheskikh Nauk 174 727 (2004)
  48. Shen G, Rivers M L et al Physics Of The Earth And Planetary Interiors 143-144 481 (2004)
  49. Shen G, Prakapenka V B et al Phys. Rev. Lett. 92 (18) (2004)
  50. Ross M, Yang L H, Boehler R Phys. Rev. B 70 (18) (2004)
  51. Errandonea D, Somayazulu M et al J. Phys.: Condens. Matter 15 7635 (2003)
  52. Zharov V E, Pasynok S L International Association Of Geodesy Symposia Vol. Vistas for Geodesy in the New MillenniumImprovement of the Earth nutation theory by taking into account the atmosphere and viscosity of the liquid core125 Chapter 75 (2002) p. 451
  53. Skripov V P, Faizullin M Z Dokl. Phys. 46 403 (2001)
  54. Zharov V E, Pasynok S L Astron. Rep. 45 908 (2001)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions