Issues

 / 

2000

 / 

May

  

Reviews of topical problems


Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth’s inner core

 a,  b
a Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors’ new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth’s core reveals that the Earth’s outer core is a very viscous melt with viscosity values ranging from 102 Pa s to 1011 Pa s depending on the depth. The Earth’s inner core is presumably an ultraviscous (>1011 Pa s) glass-like liquid — in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study.

Fulltext pdf (906 KB)
Fulltext is also available at DOI: 10.1070/PU2000v043n05ABEH000682
PACS: 61.25.Mv, 61.43.−j, 62.50.+p, 66.20.+d, 91.35.Ed (all)
DOI: 10.1070/PU2000v043n05ABEH000682
URL: https://ufn.ru/en/articles/2000/5/c/
000165080500003
Citation: Brazhkin V V, Lyapin A G "Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core" Phys. Usp. 43 493–508 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бражкин В В, Ляпин А Г «Универсальный рост вязкости металлических расплавов в мегабарном диапазоне давлений: стеклообразное состояние внутреннего ядра Земли» УФН 170 535–551 (2000); DOI: 10.3367/UFNr.0170.200005c.0535

References (126) Cited by (61) Similar articles (20) ↓

  1. V.N. Mineev, A.I. Funtikov “Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth’s corePhys. Usp. 47 671–686 (2004)
  2. D.K. Belashchenko “Computer simulation of liquid metalsPhys. Usp. 56 1176–1216 (2013)
  3. D.K. Belashchenko “Diffusion mechanisms in disordered systems: computer simulationPhys. Usp. 42 297–319 (1999)
  4. S.M. Stishov “The thermodynamics of melting of simple substancesSov. Phys. Usp. 17 625–643 (1975)
  5. B.A. Klumov “Universal structural properties of three-dimensional and two-dimensional meltsPhys. Usp. 66 288–311 (2023)
  6. L.V. Al’tshuler “Use of shock waves in high-pressure physicsSov. Phys. Usp. 8 52–91 (1965)
  7. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transitionPhys. Usp. 59 42–66 (2016)
  8. V.V. Brazhkin, A.G. Lyapin et alWhere is the supercritical fluid on the phase diagram?Phys. Usp. 55 1061–1079 (2012)
  9. A.Z. Dolginov “Origin of the magnetic fields of the earth and celestial bodiesSov. Phys. Usp. 30 475–493 (1987)
  10. L.V. Al’tshuler, A.A. Bakanova “Electronic structure and compressibility of metals at high pressuresSov. Phys. Usp. 11 678–689 (1969)
  11. D.K. Belashchenko “Does the embedded atom model have predictive power?Phys. Usp. 63 1161–1187 (2020)
  12. V.M. Svistunov, M.A. Belogolovskii, O.I. Chernyak “Tunnel investigations of metals at high pressuresSov. Phys. Usp. 30 1–22 (1987)
  13. I.L. Fabelinskii “Macroscopic and molecular shear viscosityPhys. Usp. 40 689–700 (1997)
  14. S.M. Stishov “Melting at high pressuresSov. Phys. Usp. 11 816–830 (1969)
  15. R.F. Trunin “Shock compression of condensed materials (laboratory studies)Phys. Usp. 44 371–396 (2001)
  16. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising modelPhys. Usp. 46 169–191 (2003)
  17. N.P. Kobelev, V.A. Khonik “A novel view of the nature of formation of metallic glasses, their structural relaxation, and crystallizationPhys. Usp. 66 673–690 (2023)
  18. A.I. Voropinov, G.M. Gandel’man, V.G. Podval’nyi “Electronic energy spectra and the equation of state of solids at high pressures and temperaturesSov. Phys. Usp. 13 56–72 (1970)
  19. S.B. Kormer “Optical study of the characteristics of shock-compressed condensed dielectricsSov. Phys. Usp. 11 229–254 (1968)
  20. N.B. Brandt, N.I. Ginzburg “Effect of high pressure on the superconducting properties of metalsSov. Phys. Usp. 8 202–223 (1965)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions