Issues

 / 

2000

 / 

May

  

Reviews of topical problems


Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth’s inner core

 a,  b
a Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors’ new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth’s core reveals that the Earth’s outer core is a very viscous melt with viscosity values ranging from 102 Pa s to 1011 Pa s depending on the depth. The Earth’s inner core is presumably an ultraviscous (>1011 Pa s) glass-like liquid — in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study.

Fulltext pdf (906 KB)
Fulltext is also available at DOI: 10.1070/PU2000v043n05ABEH000682
PACS: 61.25.Mv, 61.43.−j, 62.50.+p, 66.20.+d, 91.35.Ed (all)
DOI: 10.1070/PU2000v043n05ABEH000682
URL: https://ufn.ru/en/articles/2000/5/c/
000165080500003
Citation: Brazhkin V V, Lyapin A G "Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core" Phys. Usp. 43 493–508 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бражкин В В, Ляпин А Г «Универсальный рост вязкости металлических расплавов в мегабарном диапазоне давлений: стеклообразное состояние внутреннего ядра Земли» УФН 170 535–551 (2000); DOI: 10.3367/UFNr.0170.200005c.0535

References (126) ↓ Cited by (61) Similar articles (20)

  1. Fortov V E Usp. Fiz. Nauk 138 361 (1982) [Sov. Phys. Usp. 25 781 (1982)]
  2. Young D A Phase Diagrams of the Elements (Berkeley: Univ. of California Press, 1991)
  3. Gryaznov V K et al. Zh. Eksp. Teor. Fiz. 114 1242 (1998) [JETP 87 678 (1998)]
  4. Kirzhnits D A Usp. Fiz. Nauk 104 (3) 489 (1971) [Sov. Phys. Usp. 14 512 (1972)]
  5. Zharkov V N, Kalinin V A Uravneniya Sostoyaniya Tverdykh Tel pri Vysokikh Davleniyakh i Temperaturakh (Equations of State for Solids at High Pressures and Temperatures, Moscow: Nauka, 1989) [English translation of a previous edition: (New York: Consultants Bureau, 1971)]
  6. Zharkov V N, Trubitsyn V P Physics of Planetary Interiors (Tucson, Ariz.: Pachart Pub. House, 1978)
  7. Anderson D L Theory of the Earth (Boston: Blackwell Sci. Publ., 1989)
  8. Boehler R Nature (London) 363 534 (1993)
  9. Anderson 0 L J. Geomag. Geoelectr. 45 1235 (1993)
  10. Anderson W W, Ahrens T J J. Geophys. Res. 99 4273 (1994)
  11. Hubbard W Planetary Interiors (New York: Van Nostrand, 1984)
  12. Bridgman P W Collected Experimental Papers Vol. VI (Cambridge, Mass.: Harvard Univ. Press, 1964) p. 2043
  13. Bridgman P W Collected Experimental Papers Vol. VI (Cambridge, Mass.: Harvard Univ. Press, 1964) p. 3903
  14. Slusar’ V P, Rudenko N S, Tret’yakov V M, in Teplofizicheskie Svoîstva Veshchestv i Materialov (Thermophysical Properties of Substances and Materials) Vol. 7 (Moscow: Izd-vo Standarty, 1973) p. 50
  15. Munro R G, Piermarini G J, Block S Rev. Phys. Chem. Jpn. 50 79 (1980)
  16. Trappeniers N J, Van der Gulik P S, Van den Hooff H Chem. Phys. Lett. 70 438 (1980)
  17. Barnett J D, Bosco C D J. Appl. Phys. 40 3144 (1969)
  18. Sidorov V A, Tsiok O B Fiz. Tekh. Vys. Davl. 1 (3) 74 (1991)
  19. Herbst C A, Cook R L, King H E (Jr.) J. Non-Cryst. Solids 172-174 265 (1994)
  20. Hsieh M, Swalin R A Acta Metallurg. 22 219 (1974)
  21. Spaepen F, in Physics of Defects (USMG/NATO ASI. Les Houches, Session XXXV, 1980, Eds R Balian, M Kl’eman, J-P Poirier, Amsterdam: North-Holland, 1981) p. 133
  22. Chaudhari P, Spaepen F, Steinhardt P, in Glassy Metals II (Eds H Beck, H-J Güntherodt, Berlin: Springer, 1983)
  23. Poirier J P Geophys. J. 92 99 (1988)
  24. Angelani L, Parisi G, Ruocco G, Viliani G Phys. Rev. Lett. 81 4648 (1998)
  25. Meyer A, Wuttke J, Petry W, Randl O G, Schober H Phys. Rev. Lett. 80 4454 (1998)
  26. Yamamoto R, Onuki A Phys. Rev. Lett. 81 4915 (1998)
  27. Perera D N, Harrowell P Phys. Rev. Lett. 81 120 (1998)
  28. Bridgman P W Collected Experimental Papers Vol. VI (Cambridge, Mass.: Harvard Univ. Press, 1964) p. 2155
  29. Ozelton M W, Swalin R A Philos. Mag. 153 441 (1968)
  30. LeBlanc G E, Secco R A Geophys. Res. Lett. 23 213 (1996)
  31. Brazhkin V V et al. Phys. Scripta 39 338 (1989)
  32. Brazhkin V V, Popova S V, Voloshin R N High Press. Res. 6 325 (1992)
  33. Brazhkin V V et al. High Press. Res. 6 333 (1992)
  34. Brazhkin V V, Popova S V Rasplavy (4) 97 (1989)
  35. Brazhkin V V, Popova S V Rasplavy (1) 10 (1990)
  36. Brazhkin V V Pis’ma Zh. Eksp. Teor. Fiz. 68 469 (1998) [JETP Lett. 68 502 (1998)]
  37. Keyes E W, in Solids under Pressure (Eds W Paul, D M Warschauer, New York: McGraw-Hill, 1963) p. 71
  38. Angell C A Science 267 1924 (1995)
  39. Kushiro I J. Geophys. Res. 81 6347 (1976)
  40. Sharma S K, Virgo D, Kushiro I J. Non-Cryst. Solids 33 235 (1979)
  41. Kushiro I, in Physics of Magmatic Processes (Ed. R B Hargraves, Princeton, N.J.: Princeton Univ. Press, 1980) p. 93
  42. Shimizu N, Kushiro I Geochim. Cosmochim. Acta 48 1295 (1984)
  43. Doi T Rev. Phys. Chem. Jpn. 33 41 (1963)
  44. Mineev V N, Savinov E V Zh. Eksp. Teor. Fiz. 52 629 (1967) [Sov. Phys. JETP 25 411 (1967)]
  45. Mineev V N, Zaîdel’ R M Zh. Eksp. Teor. Fiz. 54 1633 (1968) [Sov. Phys. JETP 27 874 (1968)]
  46. Mineev V N, Savinov E V Zh. Eksp. Teor. Fiz. 68 1321 (1975) [Sov. Phys. JETP 41 656 (1975)]
  47. Al’tshuler L V, Kanel’ G I, Chekin B S Zh. Eksp. Teor. Fiz. 72 663 (1977) [Sov. Phys. JETP 45 348 (1977)]
  48. Hamman S D, Linton M J. Appl. Phys. 40 913 (1969)
  49. Svoîstva Elementov: Spravochnik (Properties of Elements: A Handbook, Ed. M E Drits, Moscow: Metallurgiya, 1985)
  50. Kaye G W C, Laby T H Tables of Physical and Chemical Constants 9th ed. (New York: Longmans, 1943)
  51. Shinyaev A Ya Fazovye Prevrashcheniya i Svoîstva Splavov pri Vysokom Davlenii (Phase Transformations and Properties of Alloys under High Pressure, Moscow: Nauka, 1973)
  52. Lazarus D, Nachtrieb N H, in Solids under Pressure (Eds W Paul, D M Warschauer, New York: McGraw-Hill, 1963) p. 43
  53. Longuet-Higgins H C, Pople J A J. Chem. Phys. 25 884 ( 1956)
  54. Alder B J, Gass D M, Wainwright T E J. Chem. Phys. 53 3813 (1970)
  55. Chandler D J. Chem. Phys. 62 1358 (1975)
  56. Zhakhovskiî V V Zh. Eksp. Teor. Fiz. 105 1615 (1994) [JETP 78 871 (1994)]
  57. Wallace D C Phys. Rev. E 58 538 (1998)
  58. Tonkov E Yu High Pressure Phase Transformations: A Handbook (Philadelphia: Gordon and Breach, 1992)
  59. Rice S A, Nachtrieb N H J. Chem. Phys. 31 139 (1959)
  60. Ubbelohde A R The Molten State of Matter (New York: Wiley, 1978)
  61. Andrade E N Proc. R. Soc. London. Ser. A 215 36 (1952)
  62. Souders M J. Am. Chem. Soc. 60 154 (1938)
  63. Sanditov D S, Bartenev G M Fizicheskie Svoîstva Neuporyadochennykh Struktur: Molekulyarno-Kineticheskie i Termodinamicheskie Protsessy v Neorganicheskikh Steklakh i Polimerakh (Physical Properties of Disordered Structures: Molecular-Kinetic and Thermodynamic Processes in Inorganic Glasses and Polymers, Novosibirsk: Nauka, 1982)
  64. Doolittle A K J. Appl. Phys. 22 1471 (1951)
  65. Cohen M H, Turnbull D J. Chem. Phys. 31 1164 (1959)
  66. Woodcock L V, Angell C A Phys. Rev. Lett. 47 1129 (1981)
  67. Skripov V P, Faizullin M Z High Temp. High Press. 18 1 (1986)
  68. Fearn D R, Loper D E, Roberts P H Nature (London) 292 232 (1981)
  69. Kuznetsov V V Usp. Fiz. Nauk 167 1001 (1997) [Phys. Usp. 40 951 (1997)]
  70. Song X, Richards P G Nature (London) 382 221 (1996)
  71. Whaler K, Hoime R Nature (London) 382 205 (1996)
  72. Su W-J, Dziewonski A M, Jeanioz R Science 274 1883 (1996)
  73. Song X D, Helmberger D V Science 282 924 (1998)
  74. Toomre A Geophys. J. R. Astron. Soc. 38 335 (1974)
  75. Anderson D L Nature (London) 285 204 (1980)
  76. Officer C B J. Geophys. 59 89 (1986)
  77. Vocadlo L et al. Faraday Discuss. 106 205 (1997)
  78. De Wijs G A et al. Nature (London) 392 805 (1998)
  79. Alfe D, Gillan M Phys. Rev. B 58 8248 (1998)
  80. Alfe D, Gillan M Phys. Rev. Lett. 81 5161 (1998)
  81. Ladbury R Phys. Today 49 (11) 21 (1996)
  82. Glatzmaier G A, Roberts P H Nature (London) 377 203 (1995)
  83. Brazhkin V V "Vliyanie Vysokogo Davleniya na Zatverdevanie Metallicheskikh Rasplavov" (Pb, In, Cu, Dvoinye Splavy na Osnove Medi, Effect of High Pressure on the Solidification of Metallic Melts (Pb, In, Cu, and Copper-Based Binary Alloys)), Ph.D. Thesis in Physics and Mathematics (Moscow, 1987)
  84. Khvostantsev L G, Vereshchagin L F, Novikov A P High Temp. High Press. 9 637 (1977)
  85. Beck H, Güntherodt H-J, in Glassy Metals I (Eds H-J Güntherodt, H Beck, Berlin: Springer, 1981)
  86. Metals Reference Book 5th ed. (Ed. C J Smithells, London: Butterworths, 1976)
  87. Damask A C, Dienes G J Point Defects in Metals (New York: Gordon and Breach, 1971)
  88. Kittel Ch Introduction to Solid State Physics 5th ed. (New York: Wiley, 1976) Ch. 20
  89. Ruocco G et al. Nature (London) 379 521 (1996)
  90. Guinan M W, Steinberg D J J. Phys. Chem. Solids 35 1501 (1974)
  91. Hardy W H, Crawford R K, Daniels W B J. Chem. Phys. 54 1005 (1971)
  92. Crawford R K, in Rare Gas Solids Vol. II (Eds M L Klein, J A Venables, London: Academic Press, 1977) Ch. 11
  93. Stishov S M Usp. Fiz. Nauk 114 3 (1974) [Sov. Phys. Usp. 17 625 (1975)]
  94. Hoover W G, Gray S G, Johnson K W J. Chem. Phys. 55 1128 (1971)
  95. Stevenson D J, Salpeter E E Astrophys. J. Suppl. Ser. 35 221 (1977)
  96. Ashcroft N W, Mermin N D Solid State Physics (New York: Holt, Rinehart and Winston, 1976)
  97. Boehler R et al. Rev. High Pressure Sci. Technol. 1 86 (1998)
  98. Hansen J P, McDonald I R, Pollock E L Phys. Rev. A 11 1025 (1975)
  99. Vieillefosse P, Hansen J P Phys. Rev. A 12 1106 (1975)
  100. Smyle D E Science 284 461 (1999)
  101. Kerr R A Science 283 1826 (1999)
  102. Gutenberg B Trans. Am. Geophys. Un. 38 750 (1957)
  103. Söderlind P, Moriartry A, Wills J M Phys. Rev. B 53 14063 (1996)
  104. Steinle-Neumann G, Stixrude L, Cohen R E Phys. Rev. B 60 791 (1999)
  105. Singh A K, Mao Ho-Kwang, Shu J, Hemley R J Phys. Rev. Lett. 80 2157 (1998)
  106. Mao H-K. et al. Nature (London) 396 741 (1998)
  107. Kunze H-J, in Glassy Metals II (Eds H Beck, H-J Güntherodt, Berlin: Springer, 1983)
  108. Weaire D et al. Acta Metallurg. 19 779 (1971)
  109. Golding B, Bagley B G, Hsu F S L Phys. Rev. Lett. 29 68 (1972)
  110. Boehier R, Von Bargen N, Chopelas A J. Geophys. Res. 95 21731 (1990)
  111. Yoo C S, Holmes N C, Ross M, Webb D J, Pike C Phys. Rev. Lett. 70 3931 (1993)
  112. Williams Q et al. Science 236 181 (1987)
  113. Denisov G G, Novikov V V Dokl. Ross. Akad. Nauk 362 484 (1998) [Dokl. Phys. 43 630 (1998)]
  114. Sidorenko V S Astron. Vestnik 27 119 (1993)
  115. Hide R, Dickey J O Science 253 629 (1991)
  116. Hoover W G et al. J. Chem. Phys. 52 4931 (1970)
  117. Bengtzelius U Phys. Rev. A 33 3433 (1986)
  118. Tölle A et al. Phys. Rev. Lett. 80 2374 (1998)
  119. Nauroth M, Kob W Phys. Rev. E 55 657 (1997)
  120. Wills J M, Harrison W A Phys. Rev. B 28 4363 (1983)
  121. Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A Phys. Rev. B 59 3393 (1999)
  122. Hausleitner C, Hafner J J. Phys. F 18 1025 (1988)
  123. Feltz A Amorphe und glasartige anorganische Festkörper (Berlin: Akademie-Verlag, 1983) [Translated into English: Amorphous Inorganic Materials and Glasses (Weinheim: VCH, 1993)]
  124. Shumway S L, Clarke A S, J’onsson H J. Chem. Phys. 102 1796 (1995)
  125. Ben-Amotz D, Herschbach D R J. Phys. Chem. 94 1038 (1990)
  126. Brazhkin V V, Lyapin A G High Press. Res. 15 9 (1996)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions