Reviews of topical problems

Gravitational microlensing

 a,  b
a Russian Federation State Scientific Center A.I. Alikhanov Institute ofTheoretical and Experimental Physics, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation
b Lomonosov Moscow State University, Shternberg State Astronomical Institute, Universitetskii prosp. 13, Moscow, 119889, Russian Federation

The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given.

Fulltext is available at IOP
PACS: 95.35.+d, 98.35.−a (all)
DOI: 10.1070/PU1998v041n10ABEH000460
Citation: Zakharov A F, Sazhin M V "Gravitational microlensing" Phys. Usp. 41 945–982 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:   ,    « » 168 1041–1082 (1998); DOI: 10.3367/UFNr.0168.199810a.1041

References (183) Cited by (59) Similar articles (20) ↓

  1. A.V. Gurevich, K.P. Zybin, V.A. Sirota “Small-scale structure of dark matter and microlensing40 869–898 (1997)
  2. A.G. Doroshkevich, V.N. Lukash, E.V. Mikheeva “A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model55 3–17 (2012)
  3. I.G. Dymnikova “Motion of particles and photons in the gravitational field of a rotating body (In memory of Vladimir Afanas’evich Ruban)29 215–237 (1986)
  4. D.N. Klyshko “Basic quantum mechanical concepts from the operational viewpoint41 885–922 (1998)
  5. S.N. Gurbatov, A.I. Saichev, S.F. Shandarin “Large-scale structure of the Universe. The Zeldovich approximation and the adhesion model55 223–249 (2012)
  6. A.I. Morozov, V.V. Savel’ev “On Galateas — magnetic traps with plasma-embedded conductors41 1049–1089 (1998)
  7. L.P. Grishchuk, V.M. Lipunov et alGravitational wave astronomy: in anticipation of first sources to be detected44 1–51 (2001)
  8. V.A. Ryabov, V.A. Tsarev, A.M. Tskhovrebov “The search for dark matter particles51 1091–1121 (2008)
  9. V.S. Berezinsky, V.I. Dokuchaev, Yu.N. Eroshenko “Small scale clumps of dark matter57 1–36 (2014)
  10. A.M. Cherepashchuk “Search for black holes46 335–371 (2003)
  11. V.A. Rubakov, P.G. Tinyakov “Infrared-modified gravities and massive gravitons51 759–792 (2008)
  12. A.V. Zasov, A.S. Saburova et alDark matter in galaxies60 3–39 (2017)
  13. D.G. Yakovlev, K.P. Levenfish, Yu.A. Shibanov “Cooling of neutron stars and superfluidity in their cores42 737 (1999)
  14. B.M. Smirnov “Processes in plasma and gases involving clusters40 1117–1147 (1997)
  15. A.D. Chernin “Cosmic vacuum44 1099–1118 (2001)
  16. B.E. Meierovich “Gravitational properties of cosmic strings44 981–997 (2001)
  17. M.I. Vysotskii, R.B. Nevzorov “Selected problems of supersymmetry phenomenology44 919–930 (2001)
  18. V.N. Lukash, E.V. Mikheeva, A.M. Malinovsky “Formation of the large-scale structure of the Universe54 983–1005 (2011)
  19. A.B. Aleksandrov, A.B. Dashkina et alSearch for weakly interacting massive dark matter particles: state of the art and prospects64 861–889 (2021)
  20. E.G. Maksimov, Yu.I. Shilov “Hydrogen at high pressure42 1121–1138 (1999)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions