Выпуски

 / 

2023

 / 

Июнь

  

Приборы и методы исследований


Обзор методов обратной свёртки

  а, б,  а, б,   а, б,  б,  б
а Ярославский государственный университет им. П.Г. Демидова, Советская ул. 14, Ярославль, 150000, Российская Федерация
б Национальный исследовательский ядерный университет «МИФИ», Каширское шоссе 31, Москва, 115409, Российская Федерация

Сегодня аппаратура для проведения экспериментальных измерений физических величин в самых разных научных направлениях обладает очень высокими точностью и чувствительностью. Однако, как оказывается, исключить полностью влияние инструментальных эффектов на результат невозможно. Измеряемые значения физической величины неизбежно будут отличаться от истинных и в некоторых случаях даже значительно. Таким образом, возникает задача восстановления истинных распределений из измеренных с учётом особенностей проведения эксперимента и характеристик научной аппаратуры. Применяются разные подходы, основанные на математической модели прибора и постановке задачи обратной свёртки. Представлено описание этой задачи, ключевых идей и методов её решения, а также особенностей и деталей реализации на примере экспериментов в области физики элементарных частиц и космофизики.

Текст: pdf (Полный текст предоставляется по подписке)
English fulltext is available at DOI: 10.3367/UFNe.2022.05.039189
Ключевые слова: обратная свёртка, деконволюция, анфолдинг, методы восстановления спектра, статистические оценки, байесовские методы, регуляризация, безбиновые методы, машинное обучение
PACS: 02.50.−r, 02.60.−x, 96.50.S−, 96.50.sb (все)
DOI: 10.3367/UFNr.2022.05.039189
URL: https://ufn.ru/ru/articles/2023/6/d/
001112624000004
2-s2.0-85163239655
2023PhyU...66..628B
Цитата: Богомолов Ю В, Алексеев В В, Леванова О А, Майоров А Г, Малахов В В "Обзор методов обратной свёртки" УФН 193 669–685 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 23 января 2022, доработана: 7 апреля 2022, 2 мая 2022

English citation: Bogomolov Yu V, Alekseev V V, Levanova O A, Mayorov A G, Malakhov V V “Review of unfolding methodsPhys. Usp. 66 628–642 (2023); DOI: 10.3367/UFNe.2022.05.039189

Список литературы (195) ↓ Статьи, ссылающиеся на эту (1) Похожие статьи (5)

  1. Blobel V Proc. of the 1984 CERN School of Computing, Aiguablava, Catalonia, Spain, 9--22 September 1984 (CERN 85-09) (Geneva: CERN, 1985) p. 84-114
  2. Blobel V hep-ex/0208022
  3. Rust B W, Ingersoll D T, Burrus W R A User's Manual for the FERDO and FERD Unfolding Codes (Oak Ridge, TN: Oak Ridge National Laboratory, 1983)
  4. Engl H W, Hanke M, Neubauer A Regularization of Inverse Problems (Dordrecht: Kluwer Acad. Publ., 2000)
  5. Cowan G Proc. Conf. on Advanced Statistical Techniques in Particle Physics, IPPP/02/39, Durham 2002 (EdsMR Whalley, L Lyons)
  6. Kaipio J, Somersalo E Statistical and Computational Inverse Problems (New York: Springer, 2005)
  7. Barlow R Proc. PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003
  8. Cowan G Statistical Data Analysis (Oxford: Clarendon Press, 1998)
  9. Blobel V PHYSTAT2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding
  10. Behnke O et al Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods (Weinheim: Wiley-VCH, 2013)
  11. Span'o F EPJ Web Conf. 55 (2013)
  12. Schmitt S arXiv:1611.01927; Schmitt S EPJ Web Conf. 137 11008 (2017)
  13. Hansen P C Discrete Inverse Problems - Insight and Algorithms (Ohio, OH: SIAM, 2010)
  14. Zech G arXiv:1607.06910
  15. Egorov A Yu et al St. Petersburg Polytech. State Univ. J. Phys. Math. 12 (3) (2019)
  16. Adye T arXiv:1105.1160; Adye T Proc. of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, January 2011; Adye T CERN-2011-006
  17. Brenner L et al arXiv:1910.14654
  18. Klepser S "Reconstruction of Extensive Air Showers and Measurement of the Cosmic Ray Energy Spectrum in the Range of 1-80 PeV at the South Pole" Dissertation Dr. rer. nat. (Berlin: Mathematisch-Naturwissenschaftlichen Fakultat I Humboldt-Univ. zu Berlin, 2008)
  19. Niederhausen H "Measurement of the High Energy Astrophysical Neutrino Flux Using Electron and Tau Neutrinos Observed in Four Years of IceCube Data" PhD Thesis (New York: Stony Brook Univ., 2018)
  20. Hartmann S "On the unfolding of the energy spectrum measured by the HEAT extension at the Pierre Auger Observatory" Master Deg. Dissertation (Aachen: RWTH Aachen Univ., 2015)
  21. Geenen H "Reconstruction of the Primary Energy Spectrum from Fluorescence Telescope Data of the Pierre Auger Observatory" Dissertation (Wuppertal: Univ. of Wuppertal, 2007)
  22. Zech G, Aslan B Proc. PHYSTAT 2003, Stanford, USA, September 8-11, 2003
  23. Dembinski H P, Roth M Nucl. Instum. Meth. Phys. Res. A 729 410 (2013)
  24. Andreassen A et al Phys. Rev. Lett. 124 182001 (2020); Andreassen A et al arXiv:1911.09107
  25. Arratia M et al JINST 17 P01024 (2022); Arratia M et al arXiv:2109.13243
  26. Rosenblatt M Ann. Math. Statist. 27 832 (1956)
  27. Ченцов Н Н ДАН СССР 147 45 (1962)
  28. Gu C, Qui C Ann. Statist. 21 (1) 217 (1993)
  29. Loftsgaarden D O et al Ann. Math. Stat. 36 1049 (1965)
  30. Айзерман М А, Браверман Э М, Розоноэр Л И Метод потенциальных функций в теории обучения машин (М.: Наука, 1970)
  31. Kuusela M "Statistical Issues in Unfolding Methods for High Energy Physics" Master Thesis (Espoo: Aalto Univ., 2012)
  32. Vischia P arXiv:2009.02913
  33. MicroBooNE Collab. "MicroBooNE low-energy excess signal prediction from unfolding MiniBooNE Monte-Carlo and data" MICROBOONE-NOTE-1043-PUB MicroBooNE docdb-15587 (2018)
  34. Bohm G, Zech G Introduction to Statistics and Data Analysis for Physicists (Hamburg: Verlag Deutsches Elektronen-Synchrotron, 2017)
  35. Kuusela M, Stark P B arXiv:1512.00905
  36. Höcker A, Kartvelishvili V Nucl. Instrum. Meth. Phys. Res. A 372 469 (1996)
  37. Schmitt S JINST 7 (10) T10003 (2012)
  38. D'Agostini G Nucl. Instrum. Meth. Phys. Res. A 362 487 (1995)
  39. Bierwagen K Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, PHYSTAT 2011, CERN, Geneva, Switzerland, 17-20 January 2011; Bierwagen K CERN-2011-006
  40. D'Agostini G arXiv:1010.0632
  41. Kuusela M, Panaretos V M Ann. Appl. Stat. 9 1671 (2015)
  42. Baroň P Acta Phys. Polon. B 51 1241 (2020)
  43. Choudalakis G arXiv:1201.4612
  44. Kartvelishvili V Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (PHYSTAT 2011), CERN, Geneva, Switzerland, 17±20 January 2011 (Eds H B Prosper, L Lyons); CERN-2011-006
  45. Richardson W H J. Opt. Soc. Am. 62 (1) 55 (1972)
  46. Lucy L B Astron. J. 79 745 (1974)
  47. Zech G Nucl. Instrum. Meth. Phys. Res. A 716 1 (2013)
  48. Licciardi M, Quilain B arXiv:2101.01096
  49. Офиц. сайт пакета ROOT, https://root.cern.ch/
  50. Офиц. сайт пакета RooUnfold, http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
  51. Lavička R "Ultra-Peripheral Collisions at ALICE" Dissertation Thesis (Prague: Czech Technical Univ. in Prague, 2021); CERN-THESIS-2021
  52. Тихонов А Н ДАН СССР 151 501 (1963); Tikhonov A N Sov. Math. Dokl. 4 1035 (1963)
  53. Adye T Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, PHYSTAT 2011, CERN, Geneva, Switzerland, 17-20 January 2011 (Eds H B Prosper, L Lyons) p. 313; Adye T CERN-2011-006
  54. Schmelling M Nucl. Instrum. Meth. Phys. Res. A 340 400 (1994)
  55. Narayan R, Nityananda R Annu. Rev. Astron. Astrophys. 24 127 (1986)
  56. Dembinski H P, Roth M Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (PHYSTAT 2011), CERN, Geneva, Switzerland, 17-20 January 2011 (Eds H B Prosper, L Lyons) p. 285; Dembinski H P, Roth M CERN-2011-006
  57. Green P J, Silverman B W Nonparametric Regression and Generalized Linear Models (London: Chapman and Hall, 1994)
  58. Lee T C M Comput. Statistics Data Analysis 42 139 (2003)
  59. Volobouev I arXiv:1408.6500
  60. Veklerov E, Llacer J IEEE Trans. Med. Imaging. 6 (4) 313 (1987)
  61. Blobel V OPAL Technical Note TN361 (1996)
  62. Press W H et al Numerical Recipes in FORTRAN: The Art of Scientific Computing 2nd ed. (Cambridge: Cambridge Univ. Press, 1992)
  63. Takiya C et al Nucl. Instrum. Meth. Phys. Res. A 523 186 (2004)
  64. Tang W et al JINST 12 P10002 (2017)
  65. Malaescu B arXiv:0907.3791; Malaescu B LAL 09-107
  66. Malaescu B arXiv:1106.3107; Malaescu B CERN-PH-EP-2011-111
  67. Malaescu B Lectures for PhD students, Geneva (2018)
  68. Lyons L Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (PHYSTAT 2011), CERN, Geneva, Switzerland, 17-20 January 2011 (Eds H B Prosper, L Lyons) p. 225; Lyons L CERN-2011-006.225
  69. Anykeyev V, Spiridonov A, Zhigunov V Nucl. Instrum. Meth. Phys. Res. A 322 (1992)
  70. "Statistical Methods in Particle Physics", Heidelberg Univ., WS 2020/21, https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/
  71. Stahlman J M Ph.D. Thesis at Publicly Accessible Penn Dissertations 1455 (2014)
  72. Adriani O et al (CALET Collab.) Phys. Rev. Lett. 125 251102 (2020); Adriani O et al (CALET Collab.) arXiv:2012.10319
  73. van Cittert P H Z. Phys. 69 298 (1931)
  74. Burger H C, van Cittert P H Z. Phys. 79 722 (1932)
  75. Gold R Report ANL-6984 (Lemont, IL: Argonne National Laboratory, 1964)
  76. Ter-Antonyan S V Astropart. Phys. 28 321 (2007); Ter-Antonyan S V arXiv:0706.4087
  77. Morháč M Nucl. Instrum. Meth. Phys. Res. A 559 119 (2006)
  78. Eichstädt S et al Metrologia 50 107 (2013)
  79. Simon A et al J. High Energy Phys. 2021 146 (2021)
  80. Li M et al Res. Astron. Astrophys. 19 145 (2019)
  81. Doroshenko J J et al Nucl. Technol. 33 296 (1977)
  82. Sanna R S Technical Report EML-394, Environmental Measurements Laboratory, August 1981 (1981)
  83. McElroy W W et al Technical Report AFWL-TR-67-41, US Air Force Weapons Laboratory (1967)
  84. Routti J T, Sandberg J V Radiat. Prot. Dosim. 10 (1-4) 103 (1985)
  85. Reginatto M, Goldhagen P Technical Report EML-595, Environmental Measurements Laboratory, June 1998 (1998)
  86. Chen Y H et al Sci. China Phys. Mech. Astron. 57 1885 (2014)
  87. Boszon A S "Measurements of Hadronic tt Differential Cross Sections with ATLAS and Unfolding with Gaussian Processes" PhD Thesis (London: Univ. of London, 2020)
  88. Koch L JINST 14 P09013 (2019); Koch L arXiv:1903.06568
  89. Held A Analysis Systems Typical Workshop Report, New York, June 19-20, 2019 (2019); Held A https://indico.cern.ch/event/822074/contributions/3471458/
  90. D'Agostini G slides for report at Alliance Workshop on Unfolding and Data Correction, Hamburg, Germany, 27-28 May 2010 (2010); D'Agostini G https://www.roma1.infn.it/dagos/unf2_hh.pdf
  91. Datta K, Kar D, Roy D arXiv:1806.00433
  92. Gagunashvili N D arXiv:1004.2006
  93. Glazov A arXiv:arXiv:1712.01814; Glazov A DESY-17-214
  94. Isildak B arXiv:2001.10814
  95. Goodfellow I J et al arXiv:1406.2661
  96. Butter A, Plehn T arXiv:2008.08558
  97. ARU project website, https://aru.hepforge.org/
  98. de Boor C A Practical Guide to Splines (New York: Springer-Verlag, 1978)
  99. Komiske P T, Metodiev E M, Thaler J J. High Energy Phys. 2019 (01) 121 (2019); Komiske P T, Metodiev E M, Thaler J arXiv:1810.05165
  100. Zaheer M et al Advances in Neural Inf. Proc. Systems 30: Annual Conf. on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA (2017)
  101. Cranmer K, Pavez J, Louppe G arXiv:1506.02169
  102. Bothmann E, Del Debbio L J. High Energy Phys. 2019 33 (2019)
  103. Brenner L et al Int. J. Mod. Phys. A 35 2050145 (2020)
  104. Milke N et al Nucl. Instrum. Meth. Phys. Res. 697 133 (2013)
  105. Bourbeau J, Hampel-Arias Z J. Open Source Software 3 (26) 741 (2018)
  106. Komiske P T, Metodiev E M "EnergyFlow package, 2019" https://energyflow.network/
  107. Komiske P T, Metodiev E M "OmniFold package, 2021" https://github.com/pkomiske/OmniFold
  108. Lowry K A, Johnson T L Health Phys. 47 587 (1984)
  109. De Sousa Lacerda M A et al Proc. of the 18th Intern. Symp. on Solid State Dosimetry, Oaxaca, Mexico, 24-28 Sep. 2018 p. 2018
  110. Sweezy J, Hertel N, Veinot K Nucl. Instrum. Meth. Phys. Res. A 476 263 (2002)
  111. Pivk M BABAR-THESIS-03/012 (2003)
  112. Pivk M, Le Diberder F R Nucl. Instrum. Meth. Phys. Res. A 555 356 (2005)
  113. Aaij R et al J. High Energy Phys. 2022 (01) 065 (2022)
  114. Anderlini L et al arXiv:2110.07925
  115. Mathad A et al JINST 16 (06) P06016 (2021)
  116. Артамонов А В "Исследование рождения Υ(nS) мезонов в pp-взаимодействиях при √s=7 и 8 ТэВ в эксперименте LHCb" Дисс. ... канд. физ.-мат. наук (Протвино: Ин-т физики высоких энергий имени А.А. Логунова НИЦ "Курчатовский ин-т", 2019)
  117. Andreev V et al. (H1 Collab.) arXiv:2108.12376; Andreev V et al. (H1 Collab.) DESY 21-130
  118. Wagner W Mod. Phys. Lett. A 25 1297 (2010)
  119. Gresham M I, Kim I-W, Zurek K M Phys. Rev. D 83 114027 (2011)
  120. Abazov V M et al (D0 Collab.) Phys. Rev. Lett. 101 191801 (2008)
  121. Aaltonen T et al (CDF Collab., D0 Collab.) Phys. Rev. D 97 112007 (2018)
  122. Prokhorova D S, Andronov E V J. Phys. Conf. Ser. 1690 012134 (2020)
  123. Evans L R, Bryant P JINST 3 S08001 (2008)
  124. Kohn F Ph.D. Thesis (Göttingen, 2012)
  125. ATLAS Collab. Eur. Phys. J. C 72 2039 (2012)
  126. Chatrchyan S et al (CMS Collab.) Phys. Lett. B 709 28 (2012)
  127. Savitskyi M "Measurements of differential cross sections for tt production in proton-proton collisions at √s = 13 TeV using events containing two leptons with the CMS experiment" Dissertation (Hamburg: Univ. of Hamburg, 2018)
  128. Biondi S Eur. Phys. J. Conf. 137 11002 (2017)
  129. Sirunyan A M et al (CMS Collab.) J. High Energy Phys. 2021 (03) 257 (2021)
  130. Wagner-Kuhr J arXiv:1606.02936
  131. Komiske P, McCormack W P, Nachman W Phys. Rev. D 104 076027 (2021); Komiske P, McCormack W P, Nachman W arXiv:2105.09923
  132. Bellagente A et al SciPost Phys. 9 074 (2020)
  133. Herrmann T "Study of Different Unfolding Methods of Kinematic Distributions of the WZ &arrow; WZ Scattering with Data and Simulation of the ATLAS Detector at the LHC" Dissertation (Dresden: Technical Univ. of Dresden, 2017)
  134. Агапов Н Н и др УФН 186 405 (2016); Agapov N N et al Phys. Usp. 59 383 (2016)
  135. Kolesnikov V et al Phys. Part. Nucl. Lett. 16 (1) 6-15 (2019)
  136. Бутенко А В и др УФН 193 206 (2023); Butenko A V et al Phys. Usp. 66 195 (2023)
  137. Drnoyan J et al report at The Conference "RFBR Grants for NICA", Evaluation of prospects for hypernuclei studies with MPD at NICA-JINR, Dubna, Russia, 20-23 October 2020
  138. Geraksiev N "report at Workshop on analysis techniques for centrality determination and flow measurements at FAIR and NICA (FANI-2020) Anisotropic flow of L-hyperons in MPD@NICA. - NRNU "MEPhI", Moscow, 24-28 August 2020" http://indico.oris.mephi.ru/event/181/session/1/contribution/16/
  139. Abe K et al Astrophys. J. 822 65 (2016)
  140. Adriani O et al Phys. Rev. Lett. 111 081112 (2013)
  141. Adriani O et al Phys. Rev. Lett. 105 121101 (2010)
  142. Adriani O et al Astrophys. J. 810 142 (2015); Adriani O et al arXiv:1512.01079
  143. Adriani O et al Science 332 69 (2011)
  144. Casaus J J. Phys. Conf. Ser. 631 012046 (2015)
  145. Ghelfi A Cosmic Rays & their Interstellar Medium Environment (CRISM-2014), June 2014, Montpellier, France, Proceedings of Science, CRISM2014 p. 013
  146. Aguilar M et al Phys. Rev. Lett. 126 041104 (2021)
  147. Wang Z "Measurement of Cosmic Ray Proton + Helium Flux with the DAMPE Experiment" Dissertation (Gran Sasso Science Institute, 2020)
  148. Verzi V, Ivanov D, Tsunesada Y Prog. Theor. Exp. Phys. 2017 (12) 12A103 (12)
  149. Ivanov D "Energy Spectrum Measured by the Telescope Array Surface Detector" Thesis for Doctor of Philosophy Graduate Program in Physics and Astronomy (New Brunswick, NJ: Rutgers, The State Univ. of New Jersey, 2012)
  150. Curtef V "A new unfolding method for the MAGIC telescope" Thesis for the Doctor of Physics (Dortmund: Univ. of Dortmund, 2008)
  151. Albert J et al Nucl. Instrum. Meth. A 583 494 (2007); Albert J et al arXiv:0707.2453
  152. Oberndörfer M "Bayesian Unfolding of H.E.S.S. energy spectra" Masterarbeit aus der Physik (Erlangen-Nürnberg: Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Univ., 2017)
  153. Fei Li et al Results Phys. 13 102211 (2019)
  154. Loparco F, Mazziotta M N arXiv:0912.3695
  155. Mazziotta M N arXiv:0912.1236
  156. Abdo A A et al Astrophys. J. Suppl. Ser. 187 2 (2010)
  157. Mazziotta M N arXiv:0907.0638
  158. Sandroos J arXiv:1909.07174; Sandroos J PoS-ICRC2019-999
  159. Abbasi R Phys. Rev. D 83 012001 (2011)
  160. Schüssler F on behalf of the ANTARES Collab. EPJ Web Conf. 121 05002 (2016)
  161. Trzebinski M, Staszewski R, Chwastowski J ISRN High Energy Physics 2012 491460 (2012)
  162. Wang Z et al Nucl. Technol. 168 610 (2009)
  163. Reginatto M, Goldhagen P, Neumann S Nucl. Instrum. Meth. Phys. Res. A 476 242 (2002)
  164. An F P et al (Daya Bay Collab.) Chinese Phys. C 45 (7) 073001 (2021); An F P et al (Daya Bay Collab.) arXiv:2102.04614
  165. Zhu N M IEEE T Nucl. Sci. 66 2265 (2019)
  166. Peterson J H J. Instrum. 16 C09032 (2021)
  167. Aartsen M G J. Instrum. 9 P03009 (2014)
  168. Zinchenko A, Chabratova G Nucl. Instrum. Meth. Phys. Res. A 502 (2-3) 778 (2003)
  169. Blobel V, Kleinwort C hep-ex/0208021; Blobel V, Kleinwort C DESY 02-077
  170. Reginatto M Radiat. Meas. 45 1323 (2010)
  171. Dommert M Current Directions Biomed. Eng. 3 (2) 83 (2017)
  172. Zimbal A at ECPD 2015 - 1st EPS Conf. on Plasma Diagnostics - Frascati - Proc. of Science (ECPD2015)
  173. Venanzoni G AIP Conf. Proc. 1182 665 (2009)
  174. Ablikim M Chinese Phys. C 37 063001 (2013)
  175. Samanta S Nucl. Phys. A 1005 121896 (2021); Samanta S arXiv:2002.12235
  176. Aguilar M et al (AMS Collab.) Phys. Rev. Lett. 114 171103 (2015)
  177. Green D M PhD Thesis (College Park, MD: Univ. of Maryland, 2016)
  178. Adriani O et al Astrophys. J. 791 93 (2014)
  179. An Q et al Sci. Adv. 5 (9) eaax3793 (2019)
  180. Adriani O et al Phys. Rev. Lett. 126 241101 (2021)
  181. Aab A et al Phys. Rev. D 102 062005 (2020)
  182. Zanin R "Observation of the Crab pulsar wind nebula and microquazar candidates with MAGIC" Dissertation (Autonomous Univ. of Barcelona, 2011)
  183. Albert J et al Astrophys. J. 663 125 (2007)
  184. Aartsen M G et al (IceCube Collab.) Eur. Phys. J. C 77 (10) 692 (2017)
  185. Aguilar J A et al (IceCube Collab.) Eur. Phys. J. Part. Fields 75 (3) 116 (2015)
  186. Richard E et al Phys. Rev. D 94 052001 (2016)
  187. "Statistical methods 2021", Institute of Particle and Nuclear Physics, https://ipnp.cz/?page_id=4280
  188. Логашенко И Б Методы анализа экспериментальных данных. Электронный лекционный курс (Новосибирск: НГУ, 2013)
  189. Логашенко И Б, Эйдельман С И УФН 188 540 (2018); Logashenko I B, Eidel'man S I Phys. Usp. 61 480 (2018)
  190. Alekseev V V et al J. Phys. Conf. Ser. 1390 012071 (2019)
  191. Baron P arXiv:2001.05877
  192. Wei X et al IEEE Trans. Signal Process. 70 2962 (2022); Wei X et al arXiv:2107.02848
  193. Pop F Adv. High Energy Phys. 2014 507690 (2014)
  194. Kuusela M PhyStat-ν 2019, CERN, Geneva, Switzerland
  195. Kuusela M "CP3 Remote Seminar report (Univ. Catholique de Louvain), July 1, 2020" https://agenda.irmp.ucl.ac.be/event/4000/

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение