Выпуски

 / 

1997

 / 

Ноябрь

  

Обзоры актуальных проблем


Гамильтоновский формализм для нелинейных волн

,
Институт теоретической физики им. Л.Д. Ландау РАН, ул. Косыгина 2, Москва, 119334, Российская Федерация

Представлен обзор по гамильтоновскому описанию систем гидродинамического типа для плазмы, гидродинамики и магнитной гидродинамики. Основное внимание уделяется проблеме введения канонических переменных. Указана связь с другими способами введения гамильтоновской структуры, в частности, с помощью скобок Пуассона, выраженных в естественных переменных. Показано, что вырожденность неканонических скобок Пуассона связана с существованием симметрии — группы переобозначений лагранжевых маркеров жидких частиц. Все известные теоремы о сохранении вихря (теоремы Коши, Эртеля, Томсона (Кельвина), вмороженности и сохранения топологического инварианта Хопфа) являются следствием данной симметрии. Введены канонические переменные в бесстолкновительную кинетику плазмы. Обсуждается вопрос о гамильтоновских структурах уравнений Бенни и уравнения, описывающего волны Россби. Введена гамильтоновская структура в уравнение Деви-Стюартсона. Представлен также общий метод исследования слабонелинейных волн, основанный на классической теории возмущений и редукции гамильтонианов.

Текст pdf (991 Кб)
English fulltext is available at DOI: 10.1070/PU1997v040n11ABEH000304
PACS: 52.30.−q, 52.35.Ra, 52.55.Fa (все)
DOI: 10.3367/UFNr.0167.199711a.1137
URL: https://ufn.ru/ru/articles/1997/11/a/
000071302300001
Цитата: Захаров В Е, Кузнецов Е А "Гамильтоновский формализм для нелинейных волн" УФН 167 1137–1167 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

English citation: Zakharov V E, Kuznetsov E A “Hamiltonian formalism for nonlinear wavesPhys. Usp. 40 1087–1116 (1997); DOI: 10.1070/PU1997v040n11ABEH000304

Список литературы (85) Статьи, ссылающиеся на эту (273) ↓ Похожие статьи (20)

  1. Fukumoto Ya, Zou R 2024 (3) (2024)
  2. Markov Yu A, Markova M A, Markov N Yu Nuclear Physics A 1048 122903 (2024)
  3. Kulyk K M, Yanovsky V V East Eur. J. Phys. (2) 134 (2024)
  4. Gurchenkov A A, Matveev I A Physics 6 426 (2024)
  5. Monteiro G M, Nair V P, Ganeshan S Phys. Rev. B 109 (17) (2024)
  6. Abanov A G, Cappelli A J. High Energ. Phys. 2024 (8) (2024)
  7. Gubarev Yu G, Kotelnikova M S jour 166 36 (2024)
  8. Webb G M, Anco S C et al Rev. Mod. Plasma Phys. 8 (1) (2024)
  9. Saut Je-C, Wang Yu Adv Cont Discr Mod 2024 (1) (2024)
  10. Sedletsky Yu V, Gandzha I S Proc. R. Soc. A. 479 (2277) (2023)
  11. Zheltikov A M Optics Communications 546 129766 (2023)
  12. Smirnov S, Podivilov E, Sturman B Photonics 10 640 (2023)
  13. Markov Yu A, Markova M  A, Markov N  Yu Int. J. Mod. Phys. A 38 (02) (2023)
  14. Knyazev D V Comp. Contin. Mech. 16 150 (2023)
  15. Abrashkin A A, Pelinovsky E N Theor Math Phys 215 599 (2023)
  16. Bibilova S A, Gubarev Y G Acta Appl Math 187 (1) (2023)
  17. Pezzutto P, Shrira V I J. Fluid Mech. 972 (2023)
  18. Machado M G, Abanov A G, Ganeshan S SciPost Phys. 14 (5) (2023)
  19. (11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES) Vol. 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCESStudy of the stability for three-dimensional states of dynamic equilibrium of the electron Vlasov-Poisson gasYuriy G.GubarevYangLiu2872 (2023) p. 060024
  20. Sedletsky Yu V, Gandzha I S Phys. Rev. E 106 (6) (2022)
  21. Kochurin E A, Kuznetsov E A Jetp Lett. 116 863 (2022)
  22. Malkin V M, Fisch N J Phys. Rev. E 105 (4) (2022)
  23. Abrashkin A A, Pelinovsky E N Успехи физических наук 192 491 (2022)
  24. [Abrashkin A A, Pelinovsky E N Phys. Usp. 65 453 (2022)]
  25. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  26. Gönül Ş, Özemir C Eur. Phys. J. Plus 137 (10) (2022)
  27. Wiegmann P B, Abanov A G J. High Energ. Phys. 2022 (6) (2022)
  28. Rumpf B, Lvov Yu V Fluids 7 122 (2022)
  29. Gönül Ş, Özemir C Chaos, Solitons & Fractals 165 112807 (2022)
  30. Chong Ch L Physica D: Nonlinear Phenomena 433 133164 (2022)
  31. Markov Yu A, Markova M A, Markov N Yu Russ Phys J 64 2246 (2022)
  32. Ludu A Nonlinear Waves and Solitons on Contours and Closed Surfaces Springer Series in Synergetics Chapter 9 (2022) p. 203
  33. Webb G M, Anco S C et al J. Plasma Phys. 88 (4) (2022)
  34. Abanov A  G, Wiegmann P  B Phys. Rev. Lett. 128 (5) (2022)
  35. Campolina C S, Mailybaev A A Nonlinearity 34 4684 (2021)
  36. Spiller D, Brunk A et al J. Phys.: Condens. Matter 33 364001 (2021)
  37. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  38. Grosvenor K T, Hoyos C et al Phys. Rev. Research 3 (4) (2021)
  39. Shashikanth B N Dynamically Coupled Rigid Body-Fluid Flow Systems Chapter 6 (2021) p. 133
  40. Yahalom A Symmetry 13 1632 (2021)
  41. Vakhnenko O O JNMP 24 250 (2021)
  42. Gu Ya-Ju, Bulanov S V High Pow Laser Sci Eng 9 (2021)
  43. Abali B E, Klunker A et al Z Angew Math Mech 101 (9) (2021)
  44. Chong Ch L Journal of Non-Newtonian Fluid Mechanics 292 104537 (2021)
  45. Pavlov V P, Sergeev V M, Shamin R V Theor Math Phys 208 926 (2021)
  46. Gubarev Yu G, Sun S J. Phys.: Conf. Ser. 1730 012069 (2021)
  47. Grimberg G, Tassi E EPJ H 46 (1) (2021)
  48. Maltsev A Ya, Novikov S P J. Exp. Theor. Phys. 132 645 (2021)
  49. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  50. Kopiev V F, Chernyshev S A Acoust. Phys. 67 83 (2021)
  51. Cullen J, Ivanov R European Journal of Mechanics - B/Fluids 84 325 (2020)
  52. Abanov A G, Can T et al Phys. Rev. Fluids 5 (10) (2020)
  53. Gültekin Ö, Gürcan Ö D Plasma Phys. Control. Fusion 62 025018 (2020)
  54. Zubarev N M, Zubareva O V J. Phys.: Conf. Ser. 1556 012014 (2020)
  55. Zubareva O V, Zubarev N M, Bobrov K E J. Phys.: Conf. Ser. 1556 012015 (2020)
  56. Piterbarg L I Theor Math Phys 202 412 (2020)
  57. Machon T Proc. R. Soc. A. 476 20190851 (2020)
  58. Malkin V M, Fisch N J Phys. Rev. E 101 (2) (2020)
  59. Yushkov V P Moscow Univ. Phys. 75 547 (2020)
  60. Gubarev Yu G Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy Chapter 21 (2020) p. 161
  61. Krishnaswami G S, Phatak S S et al 10 (2) (2020)
  62. Kuznetsov E A, Mikhailov E A J. Exp. Theor. Phys. 131 496 (2020)
  63. Gürcan Ö D, Li Ya, Morel P Mathematics 8 530 (2020)
  64. Gerdjikov V S, Smirnov A O, Matveev V B Eur. Phys. J. Plus 135 (8) (2020)
  65. Xiong Sh, Yang Yu J. Fluid Mech. 895 (2020)
  66. Sedletsky Yu V, Gandzha I  S Phys. Rev. E 102 (2) (2020)
  67. Dullin H R, Meiss J D, Worthington J J. Phys. A: Math. Theor. 52 365501 (2019)
  68. Dyachenko A I, Lushnikov P M, Zakharov V E J. Fluid Mech. 869 526 (2019)
  69. Vedenyapin V V, Fimin N N, Chechetkin V M Comput. Math. and Math. Phys. 59 1816 (2019)
  70. Sato N, Yamada M J. Fluid Mech. 876 896 (2019)
  71. Khazanov E A, Mironov S Yu, Mourou G Успехи физических наук 189 1173 (2019) [Khazanov E A, Mironov S Yu, Mourou G Phys.-Usp. 62 1096 (2019)]
  72. Yahalom A J. Phys.: Conf. Ser. 1416 012041 (2019)
  73. Gubarev Yu G Plasma Res. Express 1 045008 (2019)
  74. Abrashkin A J. Math. Fluid Mech. 21 (2) (2019)
  75. McKeever B F, Rodrigues D R et al Phys. Rev. B 99 (5) (2019)
  76. (MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)) Vol. MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)Conservation laws in magnetohydrodynamics and fluid dynamics: Lagrangian approachGary M.WebbStephen C.Anco2153 (2019) p. 020024
  77. Abrashkin A Deep Sea Research Part II: Topical Studies in Oceanography 160 3 (2019)
  78. Yahalom A J. Phys.: Conf. Ser. 1194 012113 (2019)
  79. Abanov A G, Monteiro G M Phys. Rev. Lett. 122 (15) (2019)
  80. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsIntroduction946 Chapter 1 (2018) p. 1
  81. Krafft C, Volokitin A S 25 (10) (2018)
  82. Vedenyapin V V, Kazakova T S et al Dokl. Math. 97 240 (2018)
  83. Vakhnenko O O Lett Math Phys 108 1807 (2018)
  84. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsMulti-Symplectic Clebsch Approach946 Chapter 9 (2018) p. 167
  85. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHamiltonian Approach946 Chapter 8 (2018) p. 137
  86. Yahalom A Springer Proceedings in Mathematics & Statistics Vol. Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2Metage Symmetry Group of Non-barotropic Magnetohydrodynamics and the Conservation of Cross Helicity255 Chapter 30 (2018) p. 387
  87. Yahalom A Fluid Dyn. Res. 50 011406 (2018)
  88. Vakhnenko O O 59 (5) (2018)
  89. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsAdvected Invariants946 Chapter 5 (2018) p. 53
  90. Buffoni B, Groves M D, Wahlén E Arch Rational Mech Anal 228 773 (2018)
  91. Campolina C S, Mailybaev A A Phys. Rev. Lett. 121 (6) (2018)
  92. Shen L Q, Zhou L F et al Phys. Rev. B 97 (22) (2018)
  93. Abrashkin A A, Pelinovsky E N Успехи физических наук 188 329 (2018) [Abrashkin A A, Pelinovsky E N Phys.-Usp. 61 307 (2018)]
  94. Vedenyapin V V, Andreeva A A, Vorobyeva V V Dokl. Math. 97 283 (2018)
  95. Kopiev V F, Chernyshev S A Acoust. Phys. 64 707 (2018)
  96. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHelicity in Fluids and MHD946 Chapter 3 (2018) p. 21
  97. Vakhnenko O O Applied Mathematics Letters 64 81 (2017)
  98. Besse N, Frisch U J. Fluid Mech. 825 412 (2017)
  99. Camassa R, Falqui G, Ortenzi G Nonlinearity 30 466 (2017)
  100. Gelash A A, L’vov V S, Zakharov V E J. Fluid Mech. 831 128 (2017)
  101. Kuznetsov E A Jetp Lett. 105 125 (2017)
  102. Nishiyama S, da Providência J Int. J. Mod. Phys. E 26 1750020 (2017)
  103. Benilov E S, Benilov M S Phys. Rev. E 96 (4) (2017)
  104. Christov I C, Kress T, Saxena A Int. J. Mod. Phys. B 31 1742008 (2017)
  105. Sen A Fluids 2 28 (2017)
  106. Miloshevich G, Lingam M, Morrison P J New J. Phys. 19 015007 (2017)
  107. Chern A, Knöppel F et al ACM Trans. Graph. 36 1 (2017)
  108. Vakhnenko O O Ukr. J. Phys. 62 271 (2017)
  109. Yahalom A Geophysical & Astrophysical Fluid Dynamics 111 131 (2017)
  110. Webb G M, Anco S C J. Phys. A: Math. Theor. 50 255501 (2017)
  111. Horikis T P, Frantzeskakis D J Phys. Rev. Lett. 118 (24) (2017)
  112. Banerjee D, Souslov A et al Nat Commun 8 (1) (2017)
  113. Dutykh D, Clamond D et al Math. Model. Nat. Phenom. 12 23 (2017)
  114. Ludu A Boundaries of a Complex World Springer Series in Synergetics Chapter 9 (2016) p. 245
  115. Grebenev V N, Oberlack M et al 57 (10) (2016)
  116. Webb G M, Anco S C J. Phys. A: Math. Theor. 49 075501 (2016)
  117. Amiranashvili Sh Lecture Notes in Physics Vol. New Approaches to Nonlinear WavesHamiltonian Framework for Short Optical Pulses908 Chapter 6 (2016) p. 153
  118. Onorato M, Baronio F et al Lecture Notes in Physics Vol. Rogue and Shock Waves in Nonlinear Dispersive MediaHydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation926 Chapter 1 (2016) p. 1
  119. Hall M J W, Reginatto M Fundamental Theories of Physics Vol. Ensembles on Configuration SpaceIntroduction184 Chapter 1 (2016) p. 3
  120. Ludu A Boundaries of a Complex World Springer Series in Synergetics Chapter 1 (2016) p. 3
  121. Vakhnenko O O 57 (11) (2016)
  122. Cherubini Ch, Filippi S Commun. Comput. Phys. 19 758 (2016)
  123. Romanova N N, Chkhetiani O G, Yakushkin I G J. Exp. Theor. Phys. 122 902 (2016)
  124. Clamond D, Dutykh D Lecture Notes in Physics Vol. New Approaches to Nonlinear WavesModeling Water Waves Beyond Perturbations908 Chapter 7 (2016) p. 197
  125. Matsuno Y Proc. R. Soc. A. 472 20160127 (2016)
  126. Gu Y J, Yu Q et al High Pow Laser Sci Eng 4 (2016)
  127. Yahalom A J. Plasma Phys. 82 (2) (2016)
  128. Gu Y J, Klimo O et al Phys. Rev. E 93 (1) (2016)
  129. Gürcan Ö D, Diamond P H J. Phys. A: Math. Theor. 48 293001 (2015)
  130. Monteiro G M, Abanov A G, Nair V  P Phys. Rev. D 91 (12) (2015)
  131. Aseeva N V, Gromov E M, Tyutin V V Radiophys Quantum El 58 209 (2015)
  132. Kalashnikova A M, Kimel A V, Pisarev R V Успехи физических наук 185 1064 (2015) [Kalashnikova A M, Kimel A V, Pisarev R V Phys.-Usp. 58 969 (2015)]
  133. Gu Y J, Klimo O et al 22 (10) (2015)
  134. Yushkov V P Moscow Univ. Phys. 70 217 (2015)
  135. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 81 (6) (2015)
  136. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IIMagnetic reconnection research with petawatt-class lasersGeorgKornLuis O.SilvaYanjunGuOndřejKlimoDeepakKumarYueLiuSushilSinghSergei V.BulanovTimur Z.EsirkepovStefanWeberGeorgKorn9515 (2015) p. 95151H
  137. Webb G M 56 (5) (2015)
  138. Ignatov A M Plasma Phys. Rep. 41 783 (2015)
  139. Tanehashi K, Yoshida Z J. Phys. A: Math. Theor. 48 495501 (2015)
  140. Moroz S, Hoyos C Phys. Rev. B 91 (6) (2015)
  141. Turchetti G, Sinigardi S, Londrillo P Eur. Phys. J. D 68 (12) (2014)
  142. Camassa R, Chen S et al J. Fluid Mech. 743 534 (2014)
  143. Ruban V P Jetp Lett. 99 124 (2014)
  144. Camassa R, Falqui G et al J. Phys.: Conf. Ser. 482 012006 (2014)
  145. Frisch U, Villone B EPJ H 39 325 (2014)
  146. Perin M, Chandre C et al Annals of Physics 348 50 (2014)
  147. Frewer M, Oberlack M, Grebenev V N Math Phys Anal Geom 17 3 (2014)
  148. Kovriguine D A Arch Appl Mech 84 159 (2014)
  149. Zubarev N M, Kuznetsov E A J. Exp. Theor. Phys. 119 169 (2014)
  150. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095501 (2014)
  151. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 80 707 (2014)
  152. Prakash Ja, Lavrenteva O M, Nir A 26 (7) (2014)
  153. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095502 (2014)
  154. Makarov V A, Petnikova V M et al Phys. Wave Phen. 21 264 (2013)
  155. Lyutikov M Phys. Rev. E 88 (5) (2013)
  156. Chandre C, de Guillebon L et al J. Phys. A: Math. Theor. 46 125203 (2013)
  157. Abanov A G J. Phys. A: Math. Theor. 46 292001 (2013)
  158. Dvornikov M J. Phys. A: Math. Theor. 46 045501 (2013)
  159. Camassa R, Chen S et al J. Fluid Mech. 726 404 (2013)
  160. Sultana Sh, Rahman Z OJFD 03 75 (2013)
  161. Lakhturov I, Adytia D, van Groesen E Wave Motion 49 309 (2012)
  162. Webb G M, Hu Q et al J. Phys. A: Math. Theor. 45 025203 (2012)
  163. Dvornikov M Found Phys 42 1469 (2012)
  164. Clamond D, Dutykh D Physica D: Nonlinear Phenomena 241 25 (2012)
  165. Zakharov V E, Kuznetsov E A Uspekhi Fizicheskikh Nauk 182 569 (2012) [Zakharov V E, Kuznetsov E A Phys.-Usp. 55 535 (2012)]
  166. Gibbon J D, Holm D D Mathematical Aspects of Fluid Mechanics 1 9 (2012) p. 201
  167. Chandre C, Morrison P J, Tassi E Physics Letters A 376 737 (2012)
  168. Kulkarni M, Abanov A G Phys. Rev. A 86 (3) (2012)
  169. de Guillebon L, Chandre C Physics Letters A 376 3172 (2012)
  170. Amiranashvili Sh, Demircan A Advances in Optical Technologies 2011 1 (2011)
  171. Rassmusen A R, Sørensen M P et al Acta Appl Math 115 43 (2011)
  172. Sokolov V V, Fotov K N, Eminov P A Dokl. Phys. 56 467 (2011)
  173. Nazarenko S V Lecture Notes in Physics Vol. Wave TurbulenceWave Turbulence Formalism825 Chapter 6 (2011) p. 67
  174. Nazarenko S Lecture Notes in Physics Vol. Wave TurbulenceMagneto-Hydrodynamic Turbulence825 Chapter 14 (2011) p. 209
  175. Felderhof B U, Sokolov V V, Éminov P A 135 (14) (2011)
  176. Kuznetsov E A, Dias F Physics Reports 507 43 (2011)
  177. Yahalom A Europhys. Lett. 89 34005 (2010)
  178. Webb G M, Hu Q et al J. Geophys. Res. 115 (A10) (2010)
  179. Zubarev N M, Zubareva O V Phys. Rev. E 82 (4) (2010)
  180. Ruban V P J. Exp. Theor. Phys. 111 776 (2010)
  181. Rasmussen A R, Sørensen M P et al Mathematics in Industry Vol. Progress in Industrial Mathematics at ECMI 2008Analytical and Numerical Modelling of Thermoviscous Shocks and Their Interactions in Nonlinear Fluids Including Dissipation15 Chapter 159 (2010) p. 997
  182. Amiranashvili Sh, Demircan A Phys. Rev. A 82 (1) (2010)
  183. Sokolov V V, Fotov K N, Eminov P A Russ Phys J 53 732 (2010)
  184. Brio M, Webb G M, Zakharian A R Mathematics in Science and Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersProblems with Multiple Temporal and Spatial Scales213 (2010) p. 175
  185. Mathematics in Science and Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersBibliography213 (2010) p. 273
  186. Nakamura T, Bulanov S V et al Phys. Rev. Lett. 105 (13) (2010)
  187. Levich E Old and New Concepts of Physics 6 239 (2009)
  188. Zubarev N M Jetp Lett. 89 271 (2009)
  189. Gordeev A V, Losseva T V Plasma Phys. Rep. 35 118 (2009)
  190. Jin-Zhang P, Hong Ya, Yi T Chinese Phys. B 18 2364 (2009)
  191. Kharif Ch, Pelinovsky E, Slunyaev A Rogue Waves in the Ocean Advances in Geophysical and Environmental Mechanics and Mathematics Chapter 3 (2009) p. 33
  192. Sokolov V V, Tolmachev V V, Éminov P A Dokl. Phys. 54 488 (2009)
  193. Ковалевский М Ю, Kovalevsky M Yu и др ТМФ 158 277 (2009) [Kovalevskii M Yu, Matskevich V T, Razumnyi A Ya Theor Math Phys 158 233 (2009)]
  194. Dünweg B, Ladd A J C Advanced Computer Simulation Approaches for Soft Matter Sciences III Chapter 2 (2009) p. 89
  195. Petnikova V M, Shuvalov V V Phys. Rev. E 79 (2) (2009)
  196. KUZNETSOV E A J. Fluid Mech. 600 167 (2008)
  197. Maksimov A O J. Exp. Theor. Phys. 106 355 (2008)
  198. Romanova N N Izv. Atmos. Ocean. Phys. 44 53 (2008)
  199. Kalashnikova A M, Kimel A V et al Phys. Rev. B 78 (10) (2008)
  200. Petnikova V M, Shuvalov V V Quantum Electron. 38 1135 (2008)
  201. Zubarev N M J. Exp. Theor. Phys. 107 668 (2008)
  202. YAHALOM ASHER, LYNDEN-BELL DONALD J. Fluid Mech. 607 235 (2008)
  203. Radu E, Volkov M S Physics Reports 468 101 (2008)
  204. Shivamoggi B K, van Heijst G J F Physics Letters A 372 5688 (2008)
  205. Gibbon J D Physica D: Nonlinear Phenomena 237 1894 (2008)
  206. Гиббон Дж, Gibbon J УМН 62 47 (2007)
  207. Romanova N N, Yakushkin I G Izv. Atmos. Ocean. Phys. 43 533 (2007)
  208. Sedletsky Yu V Jetp Lett. 86 502 (2007)
  209. Agafontsev D S, Dias F, Kuznetsov E A Physica D: Nonlinear Phenomena 225 153 (2007)
  210. Gutshabash E Sh J Math Sci 143 2765 (2007)
  211. Petnikova V M, Shuvalov V V Phys. Rev. E 76 (4) (2007)
  212. Belmont G, Sahraoui F, Rezeau L Advances in Space Research 37 1503 (2006)
  213. Sedletsky Yu V J. Phys. A: Math. Gen. 39 L529 (2006)
  214. Morrison P J Encyclopedia of Mathematical Physics (2006) p. 593
  215. Kuznetsov E A JNMP 13 64 (2006)
  216. Kalashnik M V, Ingel L Kh J. Exp. Theor. Phys. 103 141 (2006)
  217. Agafontsev D S, Dias F, Kuznetsov E A Jetp Lett. 83 201 (2006)
  218. Protogenov A P Uspekhi Fizicheskikh Nauk 176 689 (2006)
  219. Eshraghi H, Abedini Y 46 (4) (2005)
  220. Dolzhanskii F V Uspekhi Fizicheskikh Nauk 175 1257 (2005)
  221. Sedletsky Yu V Physics Letters A 343 293 (2005)
  222. Prix R Phys. Rev. D 69 (4) (2004)
  223. Kats A V Phys. Rev. E 69 (4) (2004)
  224. Ruban V P, Senchenko S L Phys. Scr. 69 227 (2004)
  225. Hall M J W J. Phys. A: Math. Gen. 37 7799 (2004)
  226. Ruban V P Phys. Rev. E 70 (6) (2004)
  227. Kuznetsov E A, Passot T, Sulem P L 11 1410 (2004)
  228. Ignatov A M Plasma Phys. Rep. 30 44 (2004)
  229. Khomeriki R, Tkeshelashvili L J. Opt. Soc. Am. B 21 2175 (2004)
  230. Доброхотов С Ю, Dobrokhotov S Yu и др ТМФ 139 62 (2004)
  231. Garnier J, Cherfils-Clérouin C, Holstein P -A Phys. Rev. E 68 (3) (2003)
  232. Ruban V P, Juul R J Phys. Rev. E 68 (5) (2003)
  233. Kats A V Jetp Lett. 77 657 (2003)
  234. Ruban V P Phys. Rev. E 68 (4) (2003)
  235. Ruban V P Phys. Rev. E 67 (6) (2003)
  236. Annenkov S Yu, Romanova N N Dokl. Phys. 48 441 (2003)
  237. Sedletsky Yu V J. Exp. Theor. Phys. 97 180 (2003)
  238. Isaev L S, Protogenov A P J. Exp. Theor. Phys. 96 1140 (2003)
  239. Dellar P J 10 581 (2003)
  240. Sahraoui F, Belmont G, Rezeau L 10 1325 (2003)
  241. Holm D D Geometry, Mechanics, and Dynamics Chapter 4 (2002) p. 169
  242. Dellar P J 9 1130 (2002)
  243. Protogenov A P, Verbus V A Jetp Lett. 76 53 (2002)
  244. Ruban V P Phys. Rev. E 65 (4) (2002)
  245. Ruban V P Phys. Rev. E 64 (3) (2001)
  246. Kuznetsov E A J. Exp. Theor. Phys. 93 1052 (2001)
  247. Ruban V P, Podolsky D I, Rasmussen J J Phys. Rev. E 63 (5) (2001)
  248. Zubarev N M, Zubareva O V Tech. Phys. 46 806 (2001)
  249. Bogdanov A V, Stankova E N Lecture Notes in Computer Science Vol. High-Performance Computing and NetworkingThe Use of Intrinsic Properties of Physical System for Derivation of High-Performance Computational Algorithms2110 Chapter 21 (2001) p. 204
  250. Kats A V Physica D: Nonlinear Phenomena 152-153 459 (2001)
  251. Ruban V P, Podolsky D I Phys. Rev. D 64 (4) (2001)
  252. Romanova N N, Yakushkin I G Dokl. Phys. 46 742 (2001)
  253. Ruban V P Phys. Rev. D 62 (12) (2000)
  254. Ruban V P Phys. Rev. E 62 4950 (2000)
  255. Доброхотов С Ю, Dobrokhotov S Yu ТМФ 125 491 (2000)
  256. Kuznetsov E A, Zakharov V E Lecture Notes in Physics Vol. Nonlinear Science at the Dawn of the 21st CenturyNonlinear Coherent Phenomena in Continuous Media542 Chapter 1 (2000) p. 3
  257. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 91 775 (2000)
  258. V S D Physica D: Nonlinear Phenomena 139 186 (2000)
  259. Zaiko Yu N Tech. Phys. Lett. 26 889 (2000)
  260. Kuznetsov E A, Ruban V P Phys. Rev. E 61 831 (2000)
  261. Graham C R, Henyey F S 12 744 (2000)
  262. Son D T Phys. Rev. Lett. 84 3771 (2000)
  263. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 88 492 (1999)
  264. Rylov Yu A 40 256 (1999)
  265. Yoshikawa T, Balk A M Physics Letters A 251 184 (1999)
  266. Kuznetsov E A Optical Solitons: Theoretical Challenges and Industrial Perspectives Chapter 3 (1999) p. 31
  267. Kuznetsov E A J. Exp. Theor. Phys. 89 163 (1999)
  268. Ruban V P J. Exp. Theor. Phys. 89 299 (1999)
  269. Kuznetsov E A, Ruban V P Lecture Notes in Physics Vol. Nonlinear MHD Waves and TurbulenceDynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD536 Chapter 14 (1999) p. 346
  270. Berning M, Rubenchik A M 10 1564 (1998)
  271. Zakharov V E, Kuznetsov E A J. Exp. Theor. Phys. 86 1035 (1998)
  272. Kuznetsov E A, Ruban V P Jetp Lett. 67 1076 (1998)
  273. Vol. MMET Conference Proceedings. 1998 International Conference on Mathematical Methods in Electromagnetic Theory. MMET 98 (Cat. No.98EX114)Hamiltonian approach to the problem of wave collapseV.V.Gushchin1 (1998) p. 266

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение