Выпуски

 / 

1997

 / 

Ноябрь

  

Обзоры актуальных проблем


Гамильтоновский формализм для нелинейных волн

,
Институт теоретической физики им. Л.Д. Ландау РАН, ул. Косыгина 2, Москва, 119334, Российская Федерация

Представлен обзор по гамильтоновскому описанию систем гидродинамического типа для плазмы, гидродинамики и магнитной гидродинамики. Основное внимание уделяется проблеме введения канонических переменных. Указана связь с другими способами введения гамильтоновской структуры, в частности, с помощью скобок Пуассона, выраженных в естественных переменных. Показано, что вырожденность неканонических скобок Пуассона связана с существованием симметрии — группы переобозначений лагранжевых маркеров жидких частиц. Все известные теоремы о сохранении вихря (теоремы Коши, Эртеля, Томсона (Кельвина), вмороженности и сохранения топологического инварианта Хопфа) являются следствием данной симметрии. Введены канонические переменные в бесстолкновительную кинетику плазмы. Обсуждается вопрос о гамильтоновских структурах уравнений Бенни и уравнения, описывающего волны Россби. Введена гамильтоновская структура в уравнение Деви-Стюартсона. Представлен также общий метод исследования слабонелинейных волн, основанный на классической теории возмущений и редукции гамильтонианов.

Текст pdf (991 Кб)
English fulltext is available at DOI: 10.1070/PU1997v040n11ABEH000304
PACS: 52.30.−q, 52.35.Ra, 52.55.Fa (все)
DOI: 10.3367/UFNr.0167.199711a.1137
URL: https://ufn.ru/ru/articles/1997/11/a/
000071302300001
Цитата: Захаров В Е, Кузнецов Е А "Гамильтоновский формализм для нелинейных волн" УФН 167 1137–1167 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

English citation: Zakharov V E, Kuznetsov E A “Hamiltonian formalism for nonlinear wavesPhys. Usp. 40 1087–1116 (1997); DOI: 10.1070/PU1997v040n11ABEH000304

Список литературы (85) Статьи, ссылающиеся на эту (266) ↓ Похожие статьи (20)

  1. Fukumoto Ya, Zou R 2024 (3) (2024)
  2. Gurchenkov A A, Matveev I A Physics 6 426 (2024)
  3. Knyazev D V Comp. Contin. Mech. 16 150 (2023)
  4. Abrashkin A A, Pelinovsky E N Theor Math Phys 215 599 (2023)
  5. Zheltikov A M Optics Communications 546 129766 (2023)
  6. Bibilova S A, Gubarev Y G Acta Appl Math 187 (1) (2023)
  7. Pezzutto P, Shrira V I J. Fluid Mech. 972 (2023)
  8. Sedletsky Yu V, Gandzha I S Proc. R. Soc. A. 479 (2277) (2023)
  9. Smirnov S, Podivilov E, Sturman B Photonics 10 640 (2023)
  10. Machado M G, Abanov A G, Ganeshan S SciPost Phys. 14 (5) (2023)
  11. Markov Yu A, Markova M  A, Markov N  Yu Int. J. Mod. Phys. A 38 (02) (2023)
  12. (11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES) Vol. 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCESStudy of the stability for three-dimensional states of dynamic equilibrium of the electron Vlasov-Poisson gasYuriy G.GubarevYangLiu2872 (2023) p. 060024
  13. Sedletsky Yu V, Gandzha I S Phys. Rev. E 106 (6) (2022)
  14. Gönül Ş, Özemir C Eur. Phys. J. Plus 137 (10) (2022)
  15. Abrashkin A A, Pelinovsky E N Успехи физических наук 192 491 (2022)
  16. [Abrashkin A A, Pelinovsky E N Phys. Usp. 65 453 (2022)]
  17. Chong Ch L Physica D: Nonlinear Phenomena 433 133164 (2022)
  18. Rumpf B, Lvov Yu V Fluids 7 122 (2022)
  19. Webb G M, Anco S C et al J. Plasma Phys. 88 (4) (2022)
  20. Abanov A  G, Wiegmann P  B Phys. Rev. Lett. 128 (5) (2022)
  21. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  22. Ludu A Nonlinear Waves and Solitons on Contours and Closed Surfaces Springer Series in Synergetics Chapter 9 (2022) p. 203
  23. Gönül Ş, Özemir C Chaos, Solitons & Fractals 165 112807 (2022)
  24. Wiegmann P B, Abanov A G J. High Energ. Phys. 2022 (6) (2022)
  25. Kochurin E A, Kuznetsov E A Jetp Lett. 116 863 (2022)
  26. Markov Yu A, Markova M A, Markov N Yu Russ Phys J 64 2246 (2022)
  27. Malkin V M, Fisch N J Phys. Rev. E 105 (4) (2022)
  28. Grosvenor K T, Hoyos C et al Phys. Rev. Research 3 (4) (2021)
  29. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  30. Vakhnenko O O JNMP 24 250 (2021)
  31. Maltsev A Ya, Novikov S P J. Exp. Theor. Phys. 132 645 (2021)
  32. Grimberg G, Tassi E EPJ H 46 (1) (2021)
  33. Yahalom A Symmetry 13 1632 (2021)
  34. Spiller D, Brunk A et al J. Phys.: Condens. Matter 33 364001 (2021)
  35. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  36. Abali B E, Klunker A et al Z Angew Math Mech 101 (9) (2021)
  37. Gu Ya-Ju, Bulanov S V High Pow Laser Sci Eng 9 (2021)
  38. Shashikanth B N Dynamically Coupled Rigid Body-Fluid Flow Systems Chapter 6 (2021) p. 133
  39. Campolina C S, Mailybaev A A Nonlinearity 34 4684 (2021)
  40. Kopiev V F, Chernyshev S A Acoust. Phys. 67 83 (2021)
  41. Chong Ch L Journal of Non-Newtonian Fluid Mechanics 292 104537 (2021)
  42. Pavlov V P, Sergeev V M, Shamin R V Theor Math Phys 208 926 (2021)
  43. Gubarev Yu G, Sun S J. Phys.: Conf. Ser. 1730 012069 (2021)
  44. Malkin V M, Fisch N J Phys. Rev. E 101 (2) (2020)
  45. Gültekin Ö, Gürcan Ö D Plasma Phys. Control. Fusion 62 025018 (2020)
  46. Machon T Proc. R. Soc. A. 476 20190851 (2020)
  47. Sedletsky Yu V, Gandzha I  S Phys. Rev. E 102 (2) (2020)
  48. Zubarev N M, Zubareva O V J. Phys.: Conf. Ser. 1556 012014 (2020)
  49. Cullen J, Ivanov R European Journal of Mechanics - B/Fluids 84 325 (2020)
  50. Gubarev Yu G Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy Chapter 21 (2020) p. 161
  51. Krishnaswami G S, Phatak S S et al 10 (2) (2020)
  52. Zubareva O V, Zubarev N M, Bobrov K E J. Phys.: Conf. Ser. 1556 012015 (2020)
  53. Abanov A G, Can T et al Phys. Rev. Fluids 5 (10) (2020)
  54. Piterbarg L I Theor Math Phys 202 412 (2020)
  55. Kuznetsov E A, Mikhailov E A J. Exp. Theor. Phys. 131 496 (2020)
  56. Yushkov V P Moscow Univ. Phys. 75 547 (2020)
  57. Xiong Sh, Yang Yu J. Fluid Mech. 895 (2020)
  58. Gerdjikov V S, Smirnov A O, Matveev V B Eur. Phys. J. Plus 135 (8) (2020)
  59. Gürcan Ö D, Li Ya, Morel P Mathematics 8 530 (2020)
  60. (MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)) Vol. MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)Conservation laws in magnetohydrodynamics and fluid dynamics: Lagrangian approachGary M.WebbStephen C.Anco2153 (2019) p. 020024
  61. Gubarev Yu G Plasma Res. Express 1 045008 (2019)
  62. Khazanov E A, Mironov S Yu, Mourou G Успехи физических наук 189 1173 (2019) [Khazanov E A, Mironov S Yu, Mourou G Phys.-Usp. 62 1096 (2019)]
  63. Yahalom A J. Phys.: Conf. Ser. 1194 012113 (2019)
  64. Abrashkin A Deep Sea Research Part II: Topical Studies in Oceanography 160 3 (2019)
  65. Dyachenko A I, Lushnikov P M, Zakharov V E J. Fluid Mech. 869 526 (2019)
  66. Yahalom A J. Phys.: Conf. Ser. 1416 012041 (2019)
  67. Vedenyapin V V, Fimin N N, Chechetkin V M Comput. Math. and Math. Phys. 59 1816 (2019)
  68. Abanov A G, Monteiro G M Phys. Rev. Lett. 122 (15) (2019)
  69. Dullin H R, Meiss J D, Worthington J J. Phys. A: Math. Theor. 52 365501 (2019)
  70. McKeever B F, Rodrigues D R et al Phys. Rev. B 99 (5) (2019)
  71. Abrashkin A J. Math. Fluid Mech. 21 (2) (2019)
  72. Sato N, Yamada M J. Fluid Mech. 876 896 (2019)
  73. Campolina C S, Mailybaev A A Phys. Rev. Lett. 121 (6) (2018)
  74. Yahalom A Springer Proceedings in Mathematics & Statistics Vol. Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2Metage Symmetry Group of Non-barotropic Magnetohydrodynamics and the Conservation of Cross Helicity255 Chapter 30 (2018) p. 387
  75. Abrashkin A A, Pelinovsky E N Успехи физических наук 188 329 (2018)
  76. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsMulti-Symplectic Clebsch Approach946 Chapter 9 (2018) p. 167
  77. Vedenyapin V V, Kazakova T S et al Dokl. Math. 97 240 (2018)
  78. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsIntroduction946 Chapter 1 (2018) p. 1
  79. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHamiltonian Approach946 Chapter 8 (2018) p. 137
  80. Krafft C, Volokitin A S 25 (10) (2018)
  81. Vakhnenko O O Lett Math Phys 108 1807 (2018)
  82. Buffoni B, Groves M D, Wahlén E Arch Rational Mech Anal 228 773 (2018)
  83. Shen L Q, Zhou L F et al Phys. Rev. B 97 (22) (2018)
  84. Vedenyapin V V, Andreeva A A, Vorobyeva V V Dokl. Math. 97 283 (2018)
  85. Yahalom A Fluid Dyn. Res. 50 011406 (2018)
  86. Vakhnenko O O 59 (5) (2018)
  87. Kopiev V F, Chernyshev S A Acoust. Phys. 64 707 (2018)
  88. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHelicity in Fluids and MHD946 Chapter 3 (2018) p. 21
  89. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsAdvected Invariants946 Chapter 5 (2018) p. 53
  90. Dutykh D, Clamond D et al Math. Model. Nat. Phenom. 12 23 (2017)
  91. Horikis T P, Frantzeskakis D J Phys. Rev. Lett. 118 (24) (2017)
  92. Gelash A A, L’vov V S, Zakharov V E J. Fluid Mech. 831 128 (2017)
  93. Sen A Fluids 2 28 (2017)
  94. Webb G M, Anco S C J. Phys. A: Math. Theor. 50 255501 (2017)
  95. Vakhnenko O O Applied Mathematics Letters 64 81 (2017)
  96. Miloshevich G, Lingam M, Morrison P J New J. Phys. 19 015007 (2017)
  97. Besse N, Frisch U J. Fluid Mech. 825 412 (2017)
  98. Yahalom A Geophysical & Astrophysical Fluid Dynamics 111 131 (2017)
  99. Kuznetsov E A Jetp Lett. 105 125 (2017)
  100. Vakhnenko O O Ukr. J. Phys. 62 271 (2017)
  101. Benilov E S, Benilov M S Phys. Rev. E 96 (4) (2017)
  102. Banerjee D, Souslov A et al Nat Commun 8 (1) (2017)
  103. Camassa R, Falqui G, Ortenzi G Nonlinearity 30 466 (2017)
  104. Chern A, Knöppel F et al ACM Trans. Graph. 36 1 (2017)
  105. Nishiyama S, da Providência J Int. J. Mod. Phys. E 26 1750020 (2017)
  106. Christov I C, Kress T, Saxena A Int. J. Mod. Phys. B 31 1742008 (2017)
  107. Hall M J W, Reginatto M Fundamental Theories of Physics Vol. Ensembles on Configuration SpaceIntroduction184 Chapter 1 (2016) p. 3
  108. Yahalom A J. Plasma Phys. 82 (2) (2016)
  109. Clamond D, Dutykh D Lecture Notes in Physics Vol. New Approaches to Nonlinear WavesModeling Water Waves Beyond Perturbations908 Chapter 7 (2016) p. 197
  110. Onorato M, Baronio F et al Lecture Notes in Physics Vol. Rogue and Shock Waves in Nonlinear Dispersive MediaHydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation926 Chapter 1 (2016) p. 1
  111. Romanova N N, Chkhetiani O G, Yakushkin I G J. Exp. Theor. Phys. 122 902 (2016)
  112. Cherubini Ch, Filippi S Commun. Comput. Phys. 19 758 (2016)
  113. Vakhnenko O O 57 (11) (2016)
  114. Gu Y J, Klimo O et al Phys. Rev. E 93 (1) (2016)
  115. Matsuno Y Proc. R. Soc. A. 472 20160127 (2016)
  116. Ludu A Boundaries of a Complex World Springer Series in Synergetics Chapter 1 (2016) p. 3
  117. Gu Y J, Yu Q et al High Pow Laser Sci Eng 4 (2016)
  118. Ludu A Boundaries of a Complex World Springer Series in Synergetics Chapter 9 (2016) p. 245
  119. Grebenev V N, Oberlack M et al 57 (10) (2016)
  120. Webb G M, Anco S C J. Phys. A: Math. Theor. 49 075501 (2016)
  121. Amiranashvili Sh Lecture Notes in Physics Vol. New Approaches to Nonlinear WavesHamiltonian Framework for Short Optical Pulses908 Chapter 6 (2016) p. 153
  122. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IIMagnetic reconnection research with petawatt-class lasersGeorgKornLuis O.SilvaYanjunGuOndřejKlimoDeepakKumarYueLiuSushilSinghSergei V.BulanovTimur Z.EsirkepovStefanWeberGeorgKorn9515 (2015) p. 95151H
  123. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 81 (6) (2015)
  124. Aseeva N V, Gromov E M, Tyutin V V Radiophys Quantum El 58 209 (2015)
  125. Tanehashi K, Yoshida Z J. Phys. A: Math. Theor. 48 495501 (2015)
  126. Monteiro G M, Abanov A G, Nair V  P Phys. Rev. D 91 (12) (2015)
  127. Gu Y J, Klimo O et al 22 (10) (2015)
  128. Kalashnikova A M, Kimel A V, Pisarev R V Успехи физических наук 185 1064 (2015) [Kalashnikova A M, Kimel A V, Pisarev R V Phys.-Usp. 58 969 (2015)]
  129. Moroz S, Hoyos C Phys. Rev. B 91 (6) (2015)
  130. Ignatov A M Plasma Phys. Rep. 41 783 (2015)
  131. Yushkov V P Moscow Univ. Phys. 70 217 (2015)
  132. Gürcan Ö D, Diamond P H J. Phys. A: Math. Theor. 48 293001 (2015)
  133. Webb G M 56 (5) (2015)
  134. Perin M, Chandre C et al Annals of Physics 348 50 (2014)
  135. Prakash Ja, Lavrenteva O M, Nir A 26 (7) (2014)
  136. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095502 (2014)
  137. Ruban V P Jetp Lett. 99 124 (2014)
  138. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 80 707 (2014)
  139. Zubarev N M, Kuznetsov E A J. Exp. Theor. Phys. 119 169 (2014)
  140. Camassa R, Chen S et al J. Fluid Mech. 743 534 (2014)
  141. Camassa R, Falqui G et al J. Phys.: Conf. Ser. 482 012006 (2014)
  142. Kovriguine D A Arch Appl Mech 84 159 (2014)
  143. Frisch U, Villone B EPJ H 39 325 (2014)
  144. Frewer M, Oberlack M, Grebenev V N Math Phys Anal Geom 17 3 (2014)
  145. Turchetti G, Sinigardi S, Londrillo P Eur. Phys. J. D 68 (12) (2014)
  146. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095501 (2014)
  147. Dvornikov M J. Phys. A: Math. Theor. 46 045501 (2013)
  148. Chandre C, de Guillebon L et al J. Phys. A: Math. Theor. 46 125203 (2013)
  149. Camassa R, Chen S et al J. Fluid Mech. 726 404 (2013)
  150. Makarov V A, Petnikova V M et al Phys. Wave Phen. 21 264 (2013)
  151. Sultana Sh, Rahman Z OJFD 03 75 (2013)
  152. Abanov A G J. Phys. A: Math. Theor. 46 292001 (2013)
  153. Lyutikov M Phys. Rev. E 88 (5) (2013)
  154. de Guillebon L, Chandre C Physics Letters A 376 3172 (2012)
  155. Zakharov V E, Kuznetsov E A Uspekhi Fizicheskikh Nauk 182 569 (2012) [Zakharov V E, Kuznetsov E A Phys.-Usp. 55 535 (2012)]
  156. Lakhturov I, Adytia D, van Groesen E Wave Motion 49 309 (2012)
  157. Dvornikov M Found Phys 42 1469 (2012)
  158. Webb G M, Hu Q et al J. Phys. A: Math. Theor. 45 025203 (2012)
  159. Clamond D, Dutykh D Physica D: Nonlinear Phenomena 241 25 (2012)
  160. Kulkarni M, Abanov A G Phys. Rev. A 86 (3) (2012)
  161. Chandre C, Morrison P J, Tassi E Physics Letters A 376 737 (2012)
  162. Gibbon J D, Holm D D Mathematical Aspects of Fluid Mechanics 1 9 (2012) p. 201
  163. Rassmusen A R, Sørensen M P et al Acta Appl Math 115 43 (2011)
  164. Amiranashvili Sh, Demircan A Advances in Optical Technologies 2011 1 (2011)
  165. Felderhof B U, Sokolov V V, Éminov P A 135 (14) (2011)
  166. Nazarenko S Lecture Notes in Physics Vol. Wave TurbulenceMagneto-Hydrodynamic Turbulence825 Chapter 14 (2011) p. 209
  167. Kuznetsov E A, Dias F Physics Reports 507 43 (2011)
  168. Nazarenko S V Lecture Notes in Physics Vol. Wave TurbulenceWave Turbulence Formalism825 Chapter 6 (2011) p. 67
  169. Sokolov V V, Fotov K N, Eminov P A Dokl. Phys. 56 467 (2011)
  170. Yahalom A Europhys. Lett. 89 34005 (2010)
  171. Sokolov V V, Fotov K N, Eminov P A Russ Phys J 53 732 (2010)
  172. Brio M, Webb G M, Zakharian A R Mathematics in Science and Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersProblems with Multiple Temporal and Spatial Scales213 (2010) p. 175
  173. Mathematics in Science and Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersBibliography213 (2010) p. 273
  174. Zubarev N M, Zubareva O V Phys. Rev. E 82 (4) (2010)
  175. Ruban V P J. Exp. Theor. Phys. 111 776 (2010)
  176. Amiranashvili Sh, Demircan A Phys. Rev. A 82 (1) (2010)
  177. Rasmussen A R, Sørensen M P et al Mathematics in Industry Vol. Progress in Industrial Mathematics at ECMI 2008Analytical and Numerical Modelling of Thermoviscous Shocks and Their Interactions in Nonlinear Fluids Including Dissipation15 Chapter 159 (2010) p. 997
  178. Webb G M, Hu Q et al J. Geophys. Res. 115 (A10) (2010)
  179. Nakamura T, Bulanov S V et al Phys. Rev. Lett. 105 (13) (2010)
  180. Levich E Old and New Concepts of Physics 6 239 (2009)
  181. Zubarev N M Jetp Lett. 89 271 (2009)
  182. Jin-Zhang P, Hong Ya, Yi T Chinese Phys. B 18 2364 (2009)
  183. Kharif Ch, Pelinovsky E, Slunyaev A Rogue Waves in the Ocean Advances in Geophysical and Environmental Mechanics and Mathematics Chapter 3 (2009) p. 33
  184. Dünweg B, Ladd A J C Advanced Computer Simulation Approaches for Soft Matter Sciences III Chapter 2 (2009) p. 89
  185. Ковалевский М Ю, Kovalevsky M Yu и др ТМФ 158 277 (2009) [Kovalevskii M Yu, Matskevich V T, Razumnyi A Ya Theor Math Phys 158 233 (2009)]
  186. Sokolov V V, Tolmachev V V, Éminov P A Dokl. Phys. 54 488 (2009)
  187. Petnikova V M, Shuvalov V V Phys. Rev. E 79 (2) (2009)
  188. Gordeev A V, Losseva T V Plasma Phys. Rep. 35 118 (2009)
  189. Kalashnikova A M, Kimel A V et al Phys. Rev. B 78 (10) (2008)
  190. KUZNETSOV E A J. Fluid Mech. 600 167 (2008)
  191. Romanova N N Izv. Atmos. Ocean. Phys. 44 53 (2008)
  192. Petnikova V M, Shuvalov V V Quantum Electron. 38 1135 (2008)
  193. Maksimov A O J. Exp. Theor. Phys. 106 355 (2008)
  194. Zubarev N M J. Exp. Theor. Phys. 107 668 (2008)
  195. Radu E, Volkov M S Physics Reports 468 101 (2008)
  196. Gibbon J D Physica D: Nonlinear Phenomena 237 1894 (2008)
  197. Shivamoggi B K, van Heijst G J F Physics Letters A 372 5688 (2008)
  198. YAHALOM ASHER, LYNDEN-BELL DONALD J. Fluid Mech. 607 235 (2008)
  199. Gutshabash E Sh J Math Sci 143 2765 (2007)
  200. Romanova N N, Yakushkin I G Izv. Atmos. Ocean. Phys. 43 533 (2007)
  201. Sedletsky Yu V Jetp Lett. 86 502 (2007)
  202. Гиббон Дж, Gibbon J УМН 62 47 (2007)
  203. Agafontsev D S, Dias F, Kuznetsov E A Physica D: Nonlinear Phenomena 225 153 (2007)
  204. Petnikova V M, Shuvalov V V Phys. Rev. E 76 (4) (2007)
  205. Belmont G, Sahraoui F, Rezeau L Advances in Space Research 37 1503 (2006)
  206. Agafontsev D S, Dias F, Kuznetsov E A Jetp Lett. 83 201 (2006)
  207. Kuznetsov E A JNMP 13 64 (2006)
  208. Protogenov A P Uspekhi Fizicheskikh Nauk 176 689 (2006)
  209. Morrison P J Encyclopedia of Mathematical Physics (2006) p. 593
  210. Sedletsky Yu V J. Phys. A: Math. Gen. 39 L529 (2006)
  211. Kalashnik M V, Ingel L Kh J. Exp. Theor. Phys. 103 141 (2006)
  212. Sedletsky Yu V Physics Letters A 343 293 (2005)
  213. Eshraghi H, Abedini Y 46 (4) (2005)
  214. Dolzhanskii F V Uspekhi Fizicheskikh Nauk 175 1257 (2005)
  215. Kats A V Phys. Rev. E 69 (4) (2004)
  216. Kuznetsov E A, Passot T, Sulem P L 11 1410 (2004)
  217. Hall M J W J. Phys. A: Math. Gen. 37 7799 (2004)
  218. Prix R Phys. Rev. D 69 (4) (2004)
  219. Khomeriki R, Tkeshelashvili L J. Opt. Soc. Am. B 21 2175 (2004)
  220. Доброхотов С Ю, Dobrokhotov S Yu и др ТМФ 139 62 (2004)
  221. Ruban V P Phys. Rev. E 70 (6) (2004)
  222. Ignatov A M Plasma Phys. Rep. 30 44 (2004)
  223. Ruban V P, Senchenko S L Phys. Scr. 69 227 (2004)
  224. Sedletsky Yu V J. Exp. Theor. Phys. 97 180 (2003)
  225. Ruban V P Phys. Rev. E 68 (4) (2003)
  226. Ruban V P Phys. Rev. E 67 (6) (2003)
  227. Annenkov S Yu, Romanova N N Dokl. Phys. 48 441 (2003)
  228. Kats A V Jetp Lett. 77 657 (2003)
  229. Sahraoui F, Belmont G, Rezeau L 10 1325 (2003)
  230. Isaev L S, Protogenov A P J. Exp. Theor. Phys. 96 1140 (2003)
  231. Dellar P J 10 581 (2003)
  232. Ruban V P, Juul R J Phys. Rev. E 68 (5) (2003)
  233. Garnier J, Cherfils-Clérouin C, Holstein P -A Phys. Rev. E 68 (3) (2003)
  234. Dellar P J 9 1130 (2002)
  235. Protogenov A P, Verbus V A Jetp Lett. 76 53 (2002)
  236. Holm D D Geometry, Mechanics, and Dynamics Chapter 4 (2002) p. 169
  237. Ruban V P Phys. Rev. E 65 (4) (2002)
  238. Romanova N N, Yakushkin I G Dokl. Phys. 46 742 (2001)
  239. Ruban V P, Podolsky D I Phys. Rev. D 64 (4) (2001)
  240. Kuznetsov E A J. Exp. Theor. Phys. 93 1052 (2001)
  241. Zubarev N M, Zubareva O V Tech. Phys. 46 806 (2001)
  242. Ruban V P, Podolsky D I, Rasmussen J J Phys. Rev. E 63 (5) (2001)
  243. Bogdanov A V, Stankova E N Lecture Notes in Computer Science Vol. High-Performance Computing and NetworkingThe Use of Intrinsic Properties of Physical System for Derivation of High-Performance Computational Algorithms2110 Chapter 21 (2001) p. 204
  244. Ruban V P Phys. Rev. E 64 (3) (2001)
  245. Kats A V Physica D: Nonlinear Phenomena 152-153 459 (2001)
  246. Ruban V P Phys. Rev. D 62 (12) (2000)
  247. Son D T Phys. Rev. Lett. 84 3771 (2000)
  248. Доброхотов С Ю, Dobrokhotov S Yu ТМФ 125 491 (2000)
  249. V S D Physica D: Nonlinear Phenomena 139 186 (2000)
  250. Graham C R, Henyey F S 12 744 (2000)
  251. Ruban V P Phys. Rev. E 62 4950 (2000)
  252. Kuznetsov E A, Ruban V P Phys. Rev. E 61 831 (2000)
  253. Kuznetsov E A, Zakharov V E Lecture Notes in Physics Vol. Nonlinear Science at the Dawn of the 21st CenturyNonlinear Coherent Phenomena in Continuous Media542 Chapter 1 (2000) p. 3
  254. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 91 775 (2000)
  255. Zaiko Yu N Tech. Phys. Lett. 26 889 (2000)
  256. Kuznetsov E A J. Exp. Theor. Phys. 89 163 (1999)
  257. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 88 492 (1999)
  258. Yoshikawa T, Balk A M Physics Letters A 251 184 (1999)
  259. Rylov Yu A 40 256 (1999)
  260. Ruban V P J. Exp. Theor. Phys. 89 299 (1999)
  261. Kuznetsov E A Optical Solitons: Theoretical Challenges and Industrial Perspectives Chapter 3 (1999) p. 31
  262. Kuznetsov E A, Ruban V P Lecture Notes in Physics Vol. Nonlinear MHD Waves and TurbulenceDynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD536 Chapter 14 (1999) p. 346
  263. Kuznetsov E A, Ruban V P Jetp Lett. 67 1076 (1998)
  264. Vol. MMET Conference Proceedings. 1998 International Conference on Mathematical Methods in Electromagnetic Theory. MMET 98 (Cat. No.98EX114)Hamiltonian approach to the problem of wave collapseV.V.Gushchin1 (1998) p. 266
  265. Zakharov V E, Kuznetsov E A J. Exp. Theor. Phys. 86 1035 (1998)
  266. Berning M, Rubenchik A M 10 1564 (1998)

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение