Issues

 / 

2024

 / 

March

  

Reviews of topical problems


Integrability structures in string theory

  a, b,   a
a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
b National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

This review is a collection of various methods and observations relevant to structures in three-dimensional systems similar to those responsible for the integrability of two-dimensional systems. Particular focus is on Nambu structures and loop variables naturally appearing in membrane dynamics. While reviewing each topic in more detail, we emphasize connections among them and speculate on possible relations to membrane integrability.

Fulltext pdf (991 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.06.039407
Keywords: integrability, Nambu structure, loop algebra, membranes, M-theory
PACS: 02.30.Ik, 04.65.+e, 11.25.−w (all)
DOI: 10.3367/UFNe.2023.06.039407
URL: https://ufn.ru/en/articles/2024/3/a/
001222840200005
2-s2.0-85191884316
2024PhyU...67..219G
Citation: Gubarev K A, Musaev E T "Integrability structures in string theory" Phys. Usp. 67 219–250 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, January 2023, revised: 7th, June 2023, 17th, June 2023

Îðèãèíàë: Ãóáàðåâ Ê À, Ìóñàåâ Ý Ò «Èíòåãðèðóåìûå ñòðóêòóðû â òåîðèè ñòðóí» ÓÔÍ 194 233–267 (2024); DOI: 10.3367/UFNr.2023.06.039407

References (185) Cited by (3) Similar articles (11) ↓

  1. M.I. Vysotskii “Supersymmetric models of elementary particles—the physics for new-generation accelerators?Sov. Phys. Usp. 28 667–693 (1985)
  2. A.V. Marshakov “String theory or field theory?Phys. Usp. 45 915–954 (2002)
  3. K.L. Zarembo, Yu.M. Makeenko “An introduction to matrix superstring modelsPhys. Usp. 41 1–23 (1998)
  4. S.G. Gukov “Introduction to string dualitiesPhys. Usp. 41 627–638 (1998)
  5. S.N. Vergeles, N.N. Nikolaev et alGeneral relativity effects in precision spin experimental tests of fundamental symmetriesPhys. Usp. 66 109–147 (2023)
  6. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheresPhys. Usp. 63 683–697 (2020)
  7. G.I. Strelkova, V.S. Anishchenko “Spatio-temporal structures in ensembles of coupled chaotic systemsPhys. Usp. 63 145–161 (2020)
  8. A.N. Pavlov, A.E. Hramov et alWavelet analysis in neurodynamicsPhys. Usp. 55 845–875 (2012)
  9. K.N. Alekseev, G.P. Berman et alDynamical chaos in magnetic systemsSov. Phys. Usp. 35 (7) 572–590 (1992)
  10. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flowsSov. Phys. Usp. 33 (1) 1–35 (1990)
  11. V.I. Petrov, G.V. Spivak, O.P. Pavlyuchenko “Electron microscopy of magnetic structures of bulky objectsSov. Phys. Usp. 13 766–777 (1971)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions