Issues

 / 

2024

 / 

March

  

Reviews of topical problems


Integrability structures in string theory

  a, b,   a
a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
b National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

This review is a collection of various methods and observations relevant to structures in three-dimensional systems similar to those responsible for the integrability of two-dimensional systems. Particular focus is on Nambu structures and loop variables naturally appearing in membrane dynamics. While reviewing each topic in more detail, we emphasize connections among them and speculate on possible relations to membrane integrability.

Fulltext pdf (991 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.06.039407
Keywords: integrability, Nambu structure, loop algebra, membranes, M-theory
PACS: 02.30.Ik, 04.65.+e, 11.25.−w (all)
DOI: 10.3367/UFNe.2023.06.039407
URL: https://ufn.ru/en/articles/2024/3/a/
001222840200005
2-s2.0-85191884316
2024PhyU...67..219G
Citation: Gubarev K A, Musaev E T "Integrability structures in string theory" Phys. Usp. 67 219–250 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, January 2023, revised: 7th, June 2023, 17th, June 2023

Îðèãèíàë: Ãóáàðåâ Ê À, Ìóñàåâ Ý Ò «Èíòåãðèðóåìûå ñòðóêòóðû â òåîðèè ñòðóí» ÓÔÍ 194 233–267 (2024); DOI: 10.3367/UFNr.2023.06.039407

References (185) ↓ Cited by (3) Similar articles (11)

  1. Slavnov N A arXiv:1804.07350
  2. Schäfer-Nameki S Lett. Math. Phys. 99 169 (2012); Schäfer-Nameki S arXiv:1012.3989
  3. Staudacher M Lett. Math. Phys. 99 191 (2012); Staudacher M arXiv:1012.3990
  4. Bajnok Z Lett. Math. Phys. 99 299 (2012); Bajnok Z arXiv:1012.3995
  5. Levkovich-Maslyuk G J. Phys. A 49 323004 (2016); Levkovich-Maslyuk G arXiv:1606.02950
  6. Bena I, Polchinski J, Roiban R Phys. Rev. D 69 046002 (2004); Bena I, Polchinski J, Roiban R hep-th/0305116
  7. Minahan J A, Zarembo K J. High Energy Phys. 2003 (03) 013 (2003); Minahan J A, Zarembo K hep-th/0212208
  8. Lunin O, Maldacena J J. High Energy Phys. 2005 (05) 033 (2005); Lunin O, Maldacena J hep-th/0502086
  9. Leigh R G, Strassler M J Nucl. Phys. B 447 95 (1995); Leigh R G, Strassler M J hep-th/9503121
  10. Frolov S A, Roiban R, Tseytlin A A J. High Energy Phys. 2005 (07) 045 (2005); Frolov S A, Roiban R, Tseytlin A A hep-th/0503192
  11. Frolov S J. High Energy Phys. 2005 (05) 069 (2005); Frolov S hep-th/0503201
  12. Giataganas D, Pando Zayas L A, Zoubos K J. High Energy Phys. 2014 (01) 129 (2014); Giataganas D, Pando Zayas L A, Zoubos K arXiv:1311.3241
  13. Beisert N et al Lett. Math. Phys. 99 3 (2012); Beisert N et al arXiv:1012.3982
  14. Dekel A, Oz Y J. High Energy Phys. 2011 (08) 004 (2011); Dekel A, Oz Y arXiv:1106.3446
  15. Linardopoulos G, Zarembo K J. High Energy Phys. 2021 (05) 203 (2021); Linardopoulos G, Zarembo K arXiv:2102.12381
  16. Linardopoulos G J. High Energy Phys. 2022 (06) 033 (2022); Linardopoulos G arXiv:2202.06824
  17. Giataganas D, Zoubos K J. High Energy Phys. 2017 (10) 042 (2017); Giataganas D, Zoubos K arXiv:1707.04033
  18. Giataganas D Phys. Rev. D 104 066017 (2021); Giataganas D arXiv:1909.02577
  19. Klimcík C J. High Energy Phys. 2002 (12) 051 (2002); Klimcík C hep-th/0210095
  20. Delduc F, Magro M, Vicedo B J. High Energy Phys. 2013 (11) 192 (2013); Delduc F, Magro M, Vicedo B arXiv:1308.3581
  21. Delduc F, Magro M, Vicedo B Phys. Rev. Lett. 112 051601 (2014); Delduc F, Magro M, Vicedo B arXiv:1309.5850
  22. Kawaguchi I, Matsumoto T, Yoshida K J. High Energy Phys. 2014 (04) 153 (2014); Kawaguchi I, Matsumoto T, Yoshida K arXiv:1401.4855
  23. van Tongeren S J J. High Energy Phys. 2015 (06) 048 (2015); van Tongeren S J arXiv:1504.05516
  24. Hoare B, Seibold F K J. High Energy Phys. 2019 (01) 125 (2019); Hoare B, Seibold F K arXiv:1811.07841
  25. Arutyunov G, Borsato R, Frolov S J. High Energy Phys. 2015 (12) 049 (2015); Arutyunov G, Borsato R, Frolov S arXiv:1507.04239
  26. Arutyunov G et al Nucl. Phys. B 903 262 (2016); Arutyunov G et al arXiv:1511.05795
  27. Tseytlin A A, Wulff L J. High Energy Phys. 2016 (06) 174 (2016); Tseytlin A A, Wulff L arXiv:1605.04884
  28. Orlando D et al J. Phys. A 53 443001 (2020); Orlando D et al arXiv:1912.02553
  29. Araujo T et al J. Phys. A 51 235401 (2018); Araujo T et al arXiv:1705.02063
  30. Araujo T et al Phys. Rev. D 95 105006 (2017); Araujo T et al arXiv:1702.02861
  31. Bakhmatov I et al J. High Energy Phys. 2018 (06) 161 (2018); Bakhmatov I et al arXiv:1803.07498
  32. Bakhmatov I, Musaev E T J. High Energy Phys. 2019 (01) 140 (2019); Bakhmatov I, Musaev E T arXiv:1811.09056
  33. Borsato R, Wulff L J. High Energy Phys. 2016 (10) 045 (2016)
  34. Bakhmatov I et al J. High Energy Phys. Vol. 2019 (08) (2019) p. 126 arXiv:1906.09052
  35. Bakhmatov I, Gubarev K, Musaev E T J. High Energy Phys. 2020 (05) 113 (2020); Bakhmatov I, Gubarev K, Musaev E T arXiv:2002.01915
  36. Gubarev K, Musaev E T Phys. Rev. D 103 066021 (2021); Gubarev K, Musaev E T arXiv:2011.11424
  37. Malek E, Thompson D C J. High Energy Phys. 2020 (04) 058 (2020); Malek E, Thompson D C arXiv:1911.07833
  38. Sakatani Y Prog. Theor. Exp. Phys. 2020 023B08 (2020); Sakatani Y arXiv:1911.06320
  39. Malek E, Sakatani Y, Thompson D C J. High Energy Phys. 2021 (01) 020 (2021); Malek E, Sakatani Y, Thompson D C arXiv:2007.08510
  40. de Leeuw M, Candu C "Introduction to Integrability FS 2013" ITP Lecture Archive https://edu.itp.phys.ethz.ch/fs13/int/
  41. Retore A L J. Phys. A 55 173001 (2022); Retore A L arXiv:2109.14280
  42. Zamolodchikov A B, Zamolodchikov A B Ann. Physics 120 253 (1979)
  43. Zamolodchikov Al B Nucl. Phys. B 342 695 (1990)
  44. Yang C N Phys. Rev. Lett. 19 1312 (1967)
  45. Baxter R J Ann. Physics 70 193 (1972)
  46. Bombardelli D J. Phys. A 49 323003 (2016); Bombardelli D arXiv:1606.02949
  47. Ryan P "Integrable systems, separation of variables and the Yang—Baxter equation" PhD Thesis (Dublin: School of Mathematics, Trinity College, The Univ. of Dublin, 2021); Ryan P http://www.tara.tcd.ie/bitstream/handle/2262/97300/Paul_Ryan_PhD_Final.pdf; Ryan P arXiv:2201.12057
  48. Wu F Y Int. J. Mod. Phys. B 7 3737 (1993)
  49. Turaev V G Invent. Math. 92 527 (1988)
  50. Kauffman L H "Knots, abstract tensors and the Yang—Baxter equation" Knots, Topology and Quantum Field Theories. Proc. of the Johns Hopkins Workshop on Current Problems in Particle Theory 13 (Ed. L Lusanna) (Singapore: World Scientific, 1989) p. 179
  51. Belavin A A, Drinfel’d V G Funct. Anal. Appl. 16 159 (1982); Belavin A A, Drinfel’d V G Funkts. Analiz Prilozh. 16 (3) 1 (1982)
  52. Arnold V I Mathematical Methods Of Classical Mechanics (Graduate Texts in Mathematics) Vol. 60 2nd ed. (New York: Springer, 1989); Translated from Russian, Arnold V I Matematicheskie Metody Klassicheskoi Mekhaniki 2nd ed. (Moscow: Nauka, 1979)
  53. Takhtajan L Commun. Math. Phys. 160 295 (1994); Takhtajan L hep-th/9301111
  54. Helal M A, El-Eissa H N Pure Math. Appl. 7 263 (1996)
  55. Agrawal G Nonlinear Fiber Optics 5th ed. (Amsterdam: Elsevier, 2013)
  56. Caudrey P J, Eilbeck J C, Gibbon J D Nuovo Cimento B 25 497 (1975)
  57. Aratyn H Proc. of the 8th Jorge Andre Swieca Summer School: Particles and Fields, 5-18 February 1995, Rio de Janeiro, Brazil (Eds J Barcelos-Neto, S F Novaes, V O Rivelles) (Singapore: World Scientific, 1996) p. 419; Aratyn H hep-th/9503211
  58. Vladimirov A A "Lectures on integrable hierarchies and vertex operators" 2nd Dubna Intern. Advanced School of Theoretical Physics, DIAS - TH, Dubna, 30 Jan. - 7 Feb. 2004; Vladimirov A A hep-th/0402097
  59. Basu A, Harvey J A Nucl. Phys. B 713 136 (2005); Basu A, Harvey J A hep-th/0412310
  60. Howe P S, Lambert N D, West P C Nucl. Phys. B 515 203 (1998); Howe P S, Lambert N D, West P C hep-th/9709014
  61. Callan C G (Jr.), Maldacena J M Nucl. Phys. B 513 198 (1998); Callan C G (Jr.), Maldacena J M hep-th/9708147
  62. Nahm W Phys. Lett. B 90 413 (1980)
  63. Diaconescu D-E Nucl. Phys. B 503 220 (1997); Diaconescu D-E hep-th/9608163
  64. Bagger J, Lambert N Phys. Rev. D 75 045020 (2007); Bagger J, Lambert N hep-th/0611108
  65. Gustavsson A Nucl. Phys. B 811 66 (2009); Gustavsson A arXiv:0709.1260
  66. Aharony O et al J. High Energy Phys. 2008 (10) 091 (2008); Aharony O et al arXiv:0806.1218
  67. Nambu Y Phys. Rev. D 7 2405 (1973)
  68. Chatterjee R Lett. Math. Phys. 36 117 (1996); Chatterjee R hep-th/9501141
  69. Ho P-M, Matsuo Y Prog. Theor. Exp. Phys. 2016 06A104 (2016); Ho P-M, Matsuo Y arXiv:1603.09534
  70. Guha P math-ph/9807018
  71. Li C et al Int. J. Mod. Phys. A 35 2050099 (2020)
  72. Wang X-L et al J. Nonlin. Math. Phys. 22 194 (2015)
  73. Takasaki K, Takebe T Rev. Math. Phys. 7 743 (1995); Takasaki K, Takebe T hep-th/9405096
  74. Takasaki K, Takebe T Int. J. Mod. Phys. A 7 (supp01b) 889 (1992); Takasaki K, Takebe T hep-th/9112046
  75. van Tongeren S J J. Phys. A 47 433001 (2014); van Tongeren S J arXiv:1310.4854
  76. Sfetsos K Nucl. Phys. B 880 225 (2014); Sfetsos K arXiv:1312.4560
  77. Hollowood T J, Miramontes J L, Schmidtt D M J. Phys. A 47 495402 (2014); Hollowood T J, Miramontes J L, Schmidtt D M arXiv:1409.1538
  78. Zakharov V E, Mikhailov A V Sov. Phys. JETP 47 1017 (1978); Zakharov V E, Mikhailov A V Zh. Eksp. Teor. Fiz. 74 1953 (1978)
  79. Cherednik I V Theor. Math. Phys. 47 422 (1981); Cherednik I V Teor. Matem. Fiz. 47 225 (1981)
  80. Klimčík C J. Math. Phys. 50 043508 (2009); Klimčík C C arXiv:0802.3518
  81. Sakamoto J, Sakatani Y, Yoshida K Prog. Theor. Exp. Phys. 2017 053B07 (2017); Sakamoto J, Sakatani Y, Yoshida K arXiv:1703.09213
  82. Fernández-Melgarejo J J et al Phys. Rev. Lett. 122 111602 (2019); Fernández-Melgarejo J J et al arXiv:1811.10600
  83. Mück W J. High Energy Phys. 2019 (05) 063 (2019); Mück W arXiv:1904.06126
  84. Hollowood T J, Miramontes J L, Schmidtt D M J. High Energy Phys. 2014 (11) 009 (2014); Hollowood T J, Miramontes J L, Schmidtt D M arXiv:1407.2840
  85. Balog J et al Phys. Lett. B 324 403 (1994); Balog J et al hep-th/9307030
  86. Evans J M, Hollowood T J Nucl. Phys. B 438 469 (1995); Evans J M, Hollowood T J hep-th/9407113
  87. Magro M Lett. Math. Phys. 99 149 (2012); Magro M arXiv:1012.3988
  88. Thompson D C PoS CORFU2018 099 (2019); Thompson D C arXiv:1904.11561
  89. Driezen S "Geometrical approach to integrable and supersymmetric sigma models" PhD Thesis (Brussel: Vrije Univ. Brussel, 2019)
  90. Hoare B, Roiban R, Tseytlin A A J. High Energy Phys. 2014 (06) 002 (2014); Hoare B, Roiban R, Tseytlin A A arXiv:1403.5517
  91. Lunin O, Roiban R, Tseytlin A A Nucl. Phys. B 891 106 (2015); Lunin O, Roiban R, Tseytlin A A arXiv:1411.1066
  92. Sfetsos K, Siampos K, Thompson D C Nucl. Phys. B 899 489 (2015); Sfetsos K, Siampos K, Thompson D C arXiv:1506.05784
  93. Hoare B, Tseytlin A A Nucl. Phys. B 897 448 (2015); Hoare B, Tseytlin A A arXiv:1504.07213
  94. van Tongeren S J Nucl. Phys. B 904 148 (2016); van Tongeren S J arXiv:1506.01023
  95. Imeroni E J. High Energy Phys. 2008 (10) 026 (2008); Imeroni E arXiv:0808.1271
  96. Arutyunov G, Frolov S J. Phys. A 42 254003 (2009); Arutyunov G, Frolov S arXiv:0901.4937
  97. Metsaev R R, Tseytlin A A Nucl. Phys. B 533 109 (1998); Metsaev R R, Tseytlin A A hep-th/9805028
  98. Borsato R, Wulff L J. High Energy Phys. 2018 (08) 027 (2018); Borsato R, Wulff L arXiv:1806.04083
  99. Klimčík C, Ševera P Phys. Lett. B 372 65 (1996); Klimčík C, Ševera P hep-th/9512040
  100. de la Ossa X C, Quevedo F Nucl. Phys. B 403 377 (1993); de la Ossa X C, Quevedo F hep-th/9210021
  101. Sfetsos K Fortschr. Phys. 59 1149 (2011); Sfetsos K arXiv:1105.0537
  102. Thompson D C Fortschr. Phys. 64 349 (2016); Thompson D C arXiv:1512.04732
  103. Petr I AIP Conf. Proc. 1307 119 (2010)
  104. Hassler F Phys. Lett. B 807 135455 (2020); Hassler F arXiv:1707.08624
  105. Blumenhagen R et al PoS CORFU2016 128 (2017); Blumenhagen R et al arXiv:1703.07347
  106. Demulder S, Hassler F, Thompson D C PoS CORFU2018 113 (2019); Demulder S, Hassler F, Thompson D C arXiv:1904.09992
  107. Borsato R, Wulff L Phys. Rev. Lett. 125 201603 (2020); Borsato R, Wulff L arXiv:2007.07902
  108. Hassler F, Rochais T Fortschr. Phys. 68 2000063 (2020); Hassler F, Rochais T arXiv:2007.07897
  109. Borsato R, Driezen S J. High Energy Phys. 2021 (05) 180 (2021); Borsato R, Driezen S arXiv:2102.04498
  110. Borsato R, Driezen S, Hassler F Phys. Lett. B 823 136771 (2021); Borsato R, Driezen S, Hassler F arXiv:2109.06185
  111. Musaev E T, Sakatani Y Phys. Rev. D 104 046015 (2021); Musaev E T, Sakatani Y arXiv:2012.13263
  112. Hlavatý L, Šnobl L Mod. Phys. Lett. A 17 429 (2002); Hlavatý L, Šnobl L hep-th/0110139
  113. Šnobl L, Hlavatý L Int. J. Mod. Phys. A 17 4043 (2002); Šnobl L, Hlavatý L math/0202210
  114. Šnobl L, Hlavatý L math/0202209
  115. von Unge R J. High Energy Phys. 2002 (07) 014 (2002); von Unge R hep-th/0205245
  116. Sakamoto J, Sakatani Y, Yoshida K J. Phys. A 50 415401 (2017); Sakamoto J, Sakatani Y, Yoshida K arXiv:1705.07116
  117. ÇTatal-Özer A, Tunali S Class. Quantum Grav. 37 075003 (2020); ÇTatal-Özer A, Tunali S arXiv:1906.09053
  118. Borsato R, Vilar López A, Wulff L J. High Energy Phys. 2020 (07) 103 (2020); Borsato R, Vilar López A, Wulff L arXiv:2003.05867
  119. Seiberg N, Witten E J. High Energy Phys. 1999 (09) 032 (1999); Seiberg N, Witten E hep-th/9908142
  120. Fradkin E S, Tseytlin A A Ann. Physics 162 31 (1985)
  121. Siegel W Phys. Rev. D 48 2826 (1993); Siegel W hep-th/9305073
  122. Siegel W Phys. Rev. D 47 5453 (1993); Siegel W hep-th/9302036
  123. Hohm O, Hull C, Zwiebach B J. High Energy Phys. 2010 (08) 008 (2010); Hohm O, Hull C, Zwiebach B arXiv:1006.4823
  124. Hohm O, Kwak S K, Zwiebach B J. High Energy Phys. 2011 (09) 013 (2011); Hohm O, Kwak S K, Zwiebach B arXiv:1107.0008
  125. Jeon I et al Phys. Lett. B 723 245 (2013); Jeon I et al arXiv:1210.5078
  126. Thompson D C J. High Energy Phys. 2011 (08) 125 (2011); Thompson D C arXiv:1106.4036
  127. Hohm O, Lüst D, Zwiebach B Fortschr. Phys. 61 926 (2013); Hohm O, Lüst D, Zwiebach B arXiv:1309.2977
  128. Aldazabal G, Marqués D, Núñez C Class. Quantum Grav. 30 163001 (2013); Aldazabal G, Marqués D, Núñez C arXiv:1305.1907
  129. Geissbühler D et al J. High Energy Phys. 2013 (06) 101 (2013); Geissbühler D et al arXiv:1304.1472
  130. Townsend P K "Four lectures on M-Theory" 1996 Summer School in High Energy Physics and Cosmology, June 10 - July 26, 1996, at the ICTP, in Trieste, Italy (The ICTP Ser. in Theoretical Physics) Vol. 13 (Eds E Gava et al) (New York: World Scientific, 1997) p. 385; Townsend P K hep-th/9612121
  131. Cremmer E, Julia B Phys. Lett. B 80 48 (1978)
  132. Hull C M, Townsend P K Nucl. Phys. B 438 109 (1995); Hull C M, Townsend P K hep-th/9410167
  133. Cremmer E et al Nucl. Phys. B 523 73 (1998); Cremmer E et al hep-th/9710119
  134. Cremmer E et al Nucl. Phys. B 535 242 (1998); Cremmer E et al hep-th/9806106
  135. Obers N A, Pioline B Phys. Rep. 318 113 (1999); Obers N A, Pioline B hep-th/9809039
  136. Duff M J, Lu J X Nucl. Phys. B 347 394 (1990)
  137. Sakatani Y, Uehara S Prog. Theor. Exp. Phys. 2020 073B01 (2020); Sakatani Y, Uehara S arXiv:2001.09983
  138. Samtleben H Class. Quantum Grav. 25 214002 (2008); Samtleben H arXiv:0808.4076
  139. Musaev E T Universe 8 276 (2022); Musaev E T arXiv:2007.01213
  140. Baguet A, Hohm O, Samtleben H PoS CORFU2014 133 (2015); Baguet A, Hohm O, Samtleben H arXiv:1506.01065
  141. Baguet A "Exceptional field theory and supergravity" PhD Thesis (Lyon: l’École Normale Supérieure, 2017)
  142. Hohm O, Samtleben H PoS CORFU2018 098 (2019); Hohm O, Samtleben H arXiv:1905.08312
  143. Musaev E T Symmetry 11 993 (2019)
  144. Berman D S, Blair C Int. J. Mod. Phys. A 35 2030014 (2020); Berman D S, Blair C arXiv:2006.09777
  145. Bakhmatov I et al Phys. Rev. D 105 L081904 (2022); Bakhmatov I et al arXiv:2203.03372
  146. Bakhmatov I et al Eur. Phys. J. C 83 37 (2023); Bakhmatov I et al arXiv:2209.01423
  147. Berman D S et al J. High Energy Phys. 2002 (02) 012 (2002); Berman D S et al hep-th/0109107
  148. Myers R Int. J. Mod. Phys. A 16 956 (2001); Myers R hep-th/0106178
  149. Constable N R, Lambert N D Phys. Rev. D 66 065016 (2002); Constable N R, Lambert N D hep-th/0206243
  150. Howe P S, Sezgin E Phys. Lett. B 394 62 (1997); Howe P S, Sezgin E hep-th/9611008
  151. Howe P S, Sezgin E, West P C Phys. Lett. B 399 49 (1997); Howe P S, Sezgin E, West P C hep-th/9702008
  152. Guralnik Z, Ramgoolam S J. High Energy Phys. 2001 (02) 032 (2001); Guralnik Z, Ramgoolam S hep-th/0101001
  153. Gustavsson A J. High Energy Phys. 2010 (11) 043 (2010); Gustavsson A arXiv:1008.0902
  154. Bergshoeff E et al Nucl. Phys. B 590 173 (2000); Bergshoeff E et al hep-th/0005026
  155. Bergshoeff E et al Phys. Lett. B 492 193 (2000); Bergshoeff E et al hep-th/0006112
  156. Gustavsson A J. High Energy Phys. 2008 (04) 083 (2008); Gustavsson A arXiv:0802.3456
  157. Sämann C Commun. Math. Phys. 305 513 (2011); Sämann C arXiv:1007.3301
  158. Saemann C "Lectures on higher structures in M-theory" Workshop on Strings, Membranes and Topological Field Theory, Tohoku University, Sendai, Japan, 5-7 March 2015 (Noncommutative Geometry and Physics) Vol. 4 (Eds Y Maeda et al) (Singapore: World Scientific, 2017) p. 171; Saemann C arXiv:1609.09815
  159. Atiyah M F et al Phys. Lett. A 65 185 (1978)
  160. Ganor O J Nucl. Phys. B 489 95 (1997); Ganor O J hep-th/9605201
  161. Gustavsson A J. High Energy Phys. 2004 (07) 074 (2004); Gustavsson A hep-th/0404150
  162. Alekseev A, Chekeres O, Mnev P J. High Energy Phys. 2015 (11) 093 (2015); Alekseev A, Chekeres O, Mnev P arXiv:1507.06343
  163. Pasti P, Sorokin D, Tonin M Phys. Rev. D 55 6292 (1997); Pasti P, Sorokin D, Tonin M hep-th/9611100
  164. Bandos I et al Phys. Rev. Lett. 78 4332 (1997); Bandos I et al hep-th/9701149
  165. Ko S-L, Sorokin D, Vanichchapongjaroen P J. High Energy Phys. 2013 (11) 072 (2013); Ko S-L, Sorokin D, Vanichchapongjaroen P arXiv:1308.2231
  166. Murray M K "An introduction to bundle gerbes" The Many Facets Of Geometry: A Tribute To Nigel Hitchin (Eds O Garcia-Prada, J P Bourguignon, S Salamon) (Oxford: Oxford Academic, 2007) p. 237; Murray M K arXiv:0712.1651
  167. Hitchin N J AMS/IP Stud. Adv. Math. 23 151 (2001); Hitchin N J math/9907034
  168. Alvarez O, Ferreira L A, Sanchez-Guillen J Int. J. Mod. Phys. A 24 1825 (2009); Alvarez O, Ferreira L A, Sanchez-Guillen J arXiv:0901.1654
  169. Freund P G O, Nepomechie R I Nucl. Phys. B 199 482 (1982)
  170. Brylinski J-L Loop Spaces, Characteristic Classes And Geometric Quantization (Boston, MA: Birkhäuser, 1993)
  171. Papageorgakis C, Sämann C J. High Energy Phys. 2011 (05) 099 (2011); Papageorgakis C, Sämann C arXiv:1103.6192
  172. Lambert N, Papageorgakis C J. High Energy Phys. 2010 (08) 083 (2010); Lambert N, Papageorgakis C arXiv:1007.2982
  173. Alvarez O, Ferreira L A, Sánchez Guillén J Nucl. Phys. B 529 689 (1998); Alvarez O, Ferreira L A, Sánchez Guillén J hep-th/9710147
  174. Frenkel I, Moore G Commun. Math. Phys. 138 259 (1991); https://projecteuclid.org:443/euclid.cmp/1104202944
  175. Zamolodchikov A B Sov. Sci. Rev. Sect. A Phys. Rev. 2 1 (1980)
  176. Zamolodchikov A B Sov. Phys. JETP 52 325 (1980); Zamolodchikov A B Zh. Eksp. Teor. Fiz. 79 641 (1980)
  177. Zamolodchikov A B Commun. Math. Phys. 79 489 (1981); https://projecteuclid.org:443/euclid.cmp/1103909139
  178. Bazhanov V V, Stroganov Yu G Theor. Math. Phys. 52 685 (1982); Bazhanov V V, Stroganov Yu G Teor. Matem. Fiz. 52 105 (1982)
  179. Maillet J M, Nijhoff F Phys. Lett. B 224 389 (1989)
  180. Carter J S, Saito M Int. J. Mod. Phys. A 11 4453 (1996)
  181. Hietarinta J J. Phys. A 27 5727 (1994)
  182. Talalaev D V Russ. Math. Surveys 76 685 (2021); Talalaev D V Usp. Matem. Nauk 76 139 (2021)
  183. Isaev A P arXiv:2206.08902
  184. Morozov A, Tselousov N Phys. Lett. B 840 137887 (2023); Morozov A, Tselousov N arXiv:2211.14956
  185. Morozov A, Tselousov N arXiv:2305.12282

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions