Issues

 / 

2024

 / 

February

  

On the 40th anniversary of the Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI). Reviews of topical problems


Electrophysics of carbon 1D structures obtained in a laser experiment: models and demonstration

 a,   b,  b,  b,  b,  b,  b,  b,  b
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
b Vladimir State University named after Alexander and Nikolay Stoletovs, Gorkogo str., 87, office 201, Vladimir, 600000, Russian Federation

Laser-induced carbon 1D structures and some of their electrophysical properties have been studied by means of computer simulations. Evidence of the possible emergence of a new allotropic phase of carbon (carbyne) produced through laser melting of graphite has been experimentally demonstrated. Methods for obtaining topological nanoclusters of controlled modifications using laser ablation are discussed, and the obtained images are presented. The main results of modeling 1D structures with fractal fragments are considered. Raman spectra with corresponding confirmation of the existence of laser-induced low-dimensional carbon structures are displayed. The structures discovered enable the development of next-generation elements and devices for nanoelectronics and nanophotonics based on new physical principles.

Fulltext pdf (3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.12.039620
Keywords: 1D structures, laser melting of graphite, carbyne, laser ablation, modeling of fractal objects, 1D electrophysics, experimental demonstration
PACS: 61.48.−c, 79.20.Eb, 81.07.−b (all)
DOI: 10.3367/UFNe.2023.12.039620
URL: https://ufn.ru/en/articles/2024/2/b/
001203946800002
2-s2.0-85188861214
2024PhyU...67..109G
Citation: Garnov S V, Abramov D V, Bukharov D N, Khudaiberganov T A, Khor’kov K S, Osipov A V, Zhirnova S V, Kucherik A O, Arakelyan S M "Electrophysics of carbon 1D structures obtained in a laser experiment: models and demonstration" Phys. Usp. 67 109–128 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, September 2023, revised: 4th, December 2023, 14th, December 2023

Оригинал: Гарнов С В, Абрамов Д В, Бухаров Д Н, Худайберганов Т А, Хорьков К С, Осипов А В, Жирнова С В, Кучерик А О, Аракелян С М «Электрофизика углеродных 1D-структур, полученных в лазерном эксперименте: модели и демонстрация» УФН 194 115–137 (2024); DOI: 10.3367/UFNr.2023.12.039620

References (127) ↓ Similar articles (1)

  1. Yang G (Ed.) Laser Ablation In Liquids. Principles And Applications In The Preparation Of Nanomaterials (New York: Jenny Stanford Publ., 2012)
  2. Abramov D V et al JETP Lett. 84 258 (2006); Abramov D V et al Pis’ma Zh. Eksp. Teor. Fiz. 84 315 (2006)
  3. Arakelian S M et al Bull. Russ. Acad. Sci. Phys. 81 1468 (2017); Arakelian S M et al Izv. Ross. Akad. Nauk Fiz. 81 1664 (2017)
  4. Kucherik A O et al Quantum Electron. 46 627 (2016); Kucherik A O et al Kvantovaya Elektron. 46 627 (2016)
  5. Kutrovskaya S V et al Laser Phys. 29 085901 (2019)
  6. Cannella C B, Goldman N J. Phys. Chem. C 119 21605 (2015)
  7. Arakelian S et al Opt. Quantum Electron. 48 342 (2016)
  8. Kucherik A O et al J. Phys. Conf. Ser. 1164 012006 (2019)
  9. Amsler M et al Eur. Phys. J. B 86 383 (2013)
  10. Khorkov K et al New Trends In Nonlinear Dynamics. Proc. Of The First Intern. Nonlinear Dynamics Conf., NODYCON 2019 Vol. 3 (Eds W Lacarbonara et al) (Cham: Springer, 2020) p. 131
  11. Mel’nichenko V M, Sladkov A M, Nikulin Yu N Russ. Chem. Rev. 51 421 (1982); Mel’nichenko V M, Sladkov A M, Nikulin Yu N Usp. Khim. 51 736 (1982)
  12. Dong X et al Proc. Natl. Acad. Sci. USA 119 e2117416119 (2022)
  13. Berghoff D et al Nat. Commun. 12 5719 (2021)
  14. Frey Ph, Rachel S Sci. Adv. 8 eabm7652 (2022)
  15. Kudashkin D V, Nikolaev S V, Yugai K N Vestn. Omsk. Univ. 21 (3) 39 (2016)
  16. Kutrovskaya S et al Nanomaterials 11 763 (2021)
  17. Compañ&oaute; R, Molenkamp L, Paul D J (Eds) "Technology Roadmap for Nanoelectronics" Technical Report 2nd ed. (Brussels: European Commission, 2000)
  18. Downer M C et al Int. J. Thermophys. 14 361 (1993)
  19. Onari S, Kontani H Phys. Rev. Lett. 128 066401 (2022); Onari S, Kontani H arXiv:2011.01158
  20. Pan B et al Sci. Adv. 1 e1500857 (2015)
  21. Matyushkin Ya et al Appl. Phys. Lett. 120 083104 (2022)
  22. Wang Q et al Nat. Mater. 15 159 (2016)
  23. Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984); Translated from Russian, Landau L D, Lifshitz E M Elektrodinamika Sploshnykh Sred (Moscow: Fizmatlit, 2005)
  24. Abrikosov A A Fundamentals Of The Theory Of Metals (Mineola, NY: Dover Publ., 2017); Translated from Russian, Abrikosov A A Osnovy Teorii Metallov (Moscow: Fizmatlit, 2010)
  25. Arakelian S M et al Vvedenie V Femtonanofotoniku: Fundamental’nye Osnovy I Lazernye Metody Upravlyaemogo Polucheniya I Diagnostiki Nanostrukturirovannykh Materialov (Introduction To Femtonanophotonics: Fundamental Principles And Laser Methods For Controlled Production And Diagnostics Of Nanostructured Materials, Exec. Ed. S M Arakelian) (Moscow: Logos, 2015)
  26. Bagayev S N et al Bull. Russ. Acad. Sci. Phys. 84 1427 (2020); Bagayev S N et al Izv. Ross. Akad. Nauk Fiz. 84 1682 (2020)
  27. Khorkov K S, Prokoshev V G, Arakelian S M J. Adv. Mater. Technol. 6 (2) 101 (2021)
  28. Arakelian S M et al Opt. Quantum Electron. 52 202 (2020)
  29. Khudaiberganov T A et al J. Phys. Conf. Ser. 1164 012008 (2019)
  30. Chestnov I Yu, Khudaiberganov T A, Arakelian S M J. Phys. Conf. Ser. 1164 012005 (2019)
  31. Khudaiberganov T A, Chestnov I Yu, Arakelian S M Appl. Phys. B 128 117 (2022)
  32. Sobolev M M et al Semiconductors 42 305 (2008); Sobolev M M et al Fiz. Tekh. Poluprovodn. 42 311 (2008)
  33. Antipov A A et al Bull. Russ. Acad. Sci. Phys. 80 818 (2016); Antipov A A et al Izv. Ross. Akad. Nauk Fiz. 80 896 (2016)
  34. Butko V Yu, DiTusa J F, Adams P W Phys. Rev. Lett. 84 1543 (2000)
  35. Skopelitis P et al Phys. Rev. Lett. 120 107001 (2018)
  36. Kutrovskaya S et al Nano Lett. 20 6502 (2020)
  37. Onari S, Kontani H Phys. Rev. Lett. 128 066401 (2022)
  38. Orekhov N, Logunov M Carbon 192 179 (2022)
  39. Kaiser K et al Science 365 1299 (2019)
  40. Hashimoto T et al Sci. Adv. 6 eabb9052 (2020)
  41. Bongiovanni G et al Nanoscale Adv. 3 5277 (2021)
  42. Whittaker A G Science 200 763 (1978)
  43. Prokoshev V G et al Izv. Ross. Akad. Nauk Fiz. 61 1560 (2016)
  44. Sladkov A M Karbin — Tret’ya Allotropnaya Forma Ugleroda (Carbyne: The Third Allotropic Form Of Carbon) (Moscow: Nauka, 2003)
  45. Heimann R B, Evsyukov S E, Kavan L (Eds) Carbyne And Carbynoid Structures (Dordrecht: Kluwer Acad., 1999)
  46. Guseva M B et al US Patent 6,454,797 B2 (2022); Bloom J et al US Patent 6,335,350 B1 (2002)
  47. Sun Q et al J. Am. Chem. Soc. 138 1106 (2016)
  48. Babaev V G et al Poverkhnost Rentgen. Sinkhrotron. Neitron. Issled. (3) 16 (2004)
  49. Rice M J et al Phys. Rev. B 34 4139 (1986)
  50. Misurkin I A, Ovchinnikov A A Russ. Chem. Rev. 46 967 (1977); Misurkin I A, Ovchinnikov A A Usp. Khim. 46 1835 (1977)
  51. Khvostov V V et al Moscow Univ. Phys. Bull. 67 (1) 71 (2012); Khvostov V V et al Vestn. Mosk. Univ. Ser. 3. Fiz. Astron. (1) 78 (2012)
  52. Leider H R, Krikorian O H, Young D A Carbon 11 555 (1973)
  53. Evseev V N, Kirillin A V, Sheindlin M A Promyshl. Teplotekh. 4 (3) 87 (1982)
  54. Kirillin A V et al High Temp. 23 557 (1985); Kirillin A V et al Teplofiz. Vys. Temp. 23 699 (1985)
  55. Glukhova O E, Slepchenkov M M, Asanov K R Semiconductors 54 1616 (2020); Glukhova O E, Slepchenkov M M, Asanov K R Fiz. Tekh. Poluprovod. 54 1355 (2020)
  56. Hamad A H "Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution" High Energy And Short Pulse Lasers (Ed. R Viskup) (London: IntechOpen, 2016)
  57. Shugaev M V et al MRS Bull. 41 960 (2016)
  58. Ionin A A, Kudryashov S I, Samokhin A A Phys. Usp. 60 149 (2017); Ionin A A, Kudryashov S I, Samokhin A A Usp. Fiz. Nauk 187 159 (2017)
  59. Georgakilas V et al Chem. Rev. 115 4744 (2015)
  60. Melezhyk A V, Tkachev A G Nanosyst. Phys. Chem. Math. 5 294 (2014)
  61. Liu P et al Nano Lett. 8 2570 (2008)
  62. Mortazavi S Z , Parvin P , Reyhani A Laser Phys. Lett. 9 547 (2012)
  63. Pilipetskii N F, Rustamov A R JETP Lett. 2 55 (1965); Pilipetskii N F, Rustamov A R Pis’ma Zh. Eksp. Teor. Fiz. 2 88 (1965)
  64. Cataldo F Carbon 42 129 (2004)
  65. Kresin V Z, Ovchinnikov Yu N Phys. Usp. 51 427 (2008); Kresin V Z, Ovchinnikov Yu N Usp. Fiz. Nauk 178 449 (2008)
  66. Kresin V V, Ovchinnikov Yu N Phys. Rev. B 73 115412 (2006)
  67. Bianco A et al Carbon 132 785 (2018)
  68. Tasis D et al Chem. Rev. 106 1105 (2006)
  69. Rao C N R et al Angew. Chem. Int. Ed. 48 7752 (2009)
  70. Kogan E Graphene 2 (2) 74 (2013)
  71. Liu M et al ACS Nano 7 10075 (2013)
  72. Casari C S et al Nanoscale 8 4414 (2016)
  73. Kibis O V, Parfitt D G W, Portnoi M E Phys. Rev. B 71 035411 (2005)
  74. Kavan L et al Carbon 33 1321 (1995)
  75. Kneipp K et al Phys. Rev. Lett. 84 3470 (2000)
  76. Xiao J, Li J, Yang G Small 13 1603495 (2017)
  77. Reber C et al J. Phys. Chem. 95 2127 (1991)
  78. Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980); Translated from Russian, Landau L D, Lifshitz E M Statisticheskaya Fizika Vol. 1 (Moscow: Fizmatlit, 2002)
  79. Zhao X et al Phys. Rev. Lett. 90 187401 (2003)
  80. Chalifoux W A, Tykwinski R R Nat. Chem. 2 967 (2010)
  81. Ma C R, Xiao J, Yang G W J. Mater. Chem. C 4 4692 (2016)
  82. Kutrovskaya S V et al Sci. Rep. 10 9709 (2020)
  83. Shaver J, Kono J Laser Photon. Rev. 1 260 (2007)
  84. Artyukhov V I, Liu M, Yakobson B I Nano Lett. 14 4224 (2014)
  85. Khoo K H et al Nano Lett. 8 2900 (2008)
  86. Zanolli Z, Onida G, Charlier J-C ACS Nano 4 5174 (2010)
  87. Zeng M G et al Appl. Phys. Lett. 96 042104 (2010)
  88. Akdim B, Pachter R ACS Nano 5 1769 (2011)
  89. Belankov A B, Stolbov V Yu Sibirsk. Zh. Industr. Matem. 8 (12) 12 (2005)
  90. Bukharov D N, Kucherik A O, Arakelyan S M J. Phys. Conf. Ser. 1331 012017 (2019)
  91. Bukharov D N et al J. Phys. Conf. Ser. 1331 012008 (2019)
  92. Arakelian S M et al, in New Trends In Nonlinear Dynamics. Proc. Of The First Intern. Nonlinear Dynamics Conf., NODYCON 2019 Vol. 3 (Eds W Lacarbonara et al) (Cham: Springer, 2020) p. 121
  93. Richardella A et al Science 327 665 (2010)
  94. Gantmakher V F Electrons And Disorder In Solids (Oxford: Oxford Univ. Press, 2005); Translated from Russian, Gantmakher V F Elektrony V Neuporyadochennykh Sredakh (Moscow: Fizmatlit, 2013)
  95. Ignatov A N Nanoelektronika. Sostoyanie I Perspektivy Razvitiya (Nanoelectronics. Status And Development Prospects) (Moscow: Flinta, 2012)
  96. Dragunov V P, Neizvestnyi I G, Gridchin V A Osnovy Nanoelektroniki (Fundamentals Of Nanoelectronics) (Moscow: Logos, 2011)
  97. Prazdnikov Yu E et al Moscow Univ. Phys. Bull. 59 (5) 26 (2004); Prazdnikov Yu E et al Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. (5) 37 (2004)
  98. Prazdnikov Yu E et al J. Russ. Laser Res. 26 245 (2005)
  99. Prazdnikov Yu J. Mod. Phys. 2 845 (2011)
  100. Ivanenko I P, Krasnoshchekov S V, Pavlikov A V Semiconductors 52 907 (2018); Ivanenko I P, Krasnoshchekov S V, Pavlikov A V Fiz. Tekh. Poluprovodn. 52 768 (2018)
  101. Bukharov D N, Kucherik A O, Arakelian S M J. Adv. Mater. Technol. 8 (3) 227 (2023)
  102. Huang E W et al Science 358 1161 (2017)
  103. Ferini G, Baratta G A, Palumbo M E Astron. Astrophys. 414 757 (2004)
  104. Lozovik Yu E, Popov A M Phys. Usp. 40 717 (1997); Lozovik Yu E, Popov A M Usp. Fiz. Nauk 167 751 (1997)
  105. Samyshkin V et al Opt. Quantum Electron. 51 394 (2019)
  106. Yao K-X, Zhang Z, Chin C Nature 602 68 (2022)
  107. Briggeman M et al Science 367 769 (2020)
  108. Faoro L, Feigel’man M V, Ioffe L Ann. Physics 409 167916 (2019)
  109. Punnoose A, Finkel’stein A M Science 310 289 (2005)
  110. Yugai K N Vestn. Omsk. Univ. (2) 104 (2013)
  111. Wu H et al Nature 604 653 (2022)
  112. Sedov E et al Sci. Rep. 10 8131 (2020)
  113. Sedov E, Arakelian S, Kavokin A Sci. Rep. 11 22382 (2021)
  114. Chestnov I Y, Arakelian S M, Kavokin A V New J. Phys. 23 023024 (2021)
  115. Feynman R P, Hibbs A R, Styer D F Quantum Mechanics And Path Integrals Emended ed. (Mineola, NY: Dover Publ., 2010)
  116. Frydman A Physica C 391 382 (2003)
  117. Kavokin A et al Superlattices Microstruct. 111 335 (2017)
  118. Sadakov A V, Sobolevskii O A, Pudalov V M Phys. Usp. 65 1313 (2022); Sadakov A V, Sobolevskii O A, Pudalov V M Usp. Fiz. Nauk 192 1409 (2022)
  119. Marik S et al Phys. Rev. Mater. 3 060602 (2019)
  120. Kang M et al Nat. Phys. 18 301 (2022)
  121. Meng Y et al Nat. Commun. 14 2431 (2023)
  122. Grigoriev I S, Meilikhov E Z (Eds) Handbook Of Physical Quantities (Boca Raton, FL: CRC Press, 1997); Translated from Russian, Grigoriev I S, Meilikhov E Z (Eds) Fizicheskie Velichiny: Spravochnik (Moscow: Energoatomizdat, 1991)
  123. Kucherik A et al Opt. Spectrosc. 121 263 (2016); Kucherik A et al Opt. Spektrosk. 121 285 (2016)
  124. Smirnov B M Phys. Usp. 29 481 (1986); Smirnov B M Usp. Fiz. Nauk 149 177 (1986)
  125. Aleksandrov D V, Galenko P K Phys. Usp. 57 771 (2014); Aleksandrov D V, Galenko P K Usp. Fiz. Nauk 184 833 (2014)
  126. Wang E et al Nat. Commun. 14 7233 (2023)
  127. Veselov D A et al J. Luminescence 263 120164 (2023)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions