Laser-induced carbon 1D structures and some of their electrophysical properties have been studied by means of computer simulations. Evidence of the possible emergence of a new allotropic phase of carbon (carbyne) produced through laser melting of graphite has been experimentally demonstrated. Methods for obtaining topological nanoclusters of controlled modifications using laser ablation are discussed, and the obtained images are presented. The main results of modeling 1D structures with fractal fragments are considered. Raman spectra with corresponding confirmation of the existence of laser-induced low-dimensional carbon structures are displayed. The structures discovered enable the development of next-generation elements and devices for nanoelectronics and nanophotonics based on new physical principles.
Keywords: 1D structures, laser melting of graphite, carbyne, laser ablation, modeling of fractal objects, 1D electrophysics, experimental demonstration PACS:61.48.−c, 79.20.Eb, 81.07.−b (all) DOI:10.3367/UFNe.2023.12.039620 URL: https://ufn.ru/en/articles/2024/2/b/ 001203946800002 2-s2.0-85188861214 2024PhyU...67..109G Citation: Garnov S V, Abramov D V, Bukharov D N, Khudaiberganov T A, Khor’kov K S, Osipov A V, Zhirnova S V, Kucherik A O, Arakelyan S M "Electrophysics of carbon 1D structures obtained in a laser experiment: models and demonstration" Phys. Usp.67 109–128 (2024)
Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984); Translated from Russian, Landau L D, Lifshitz E M Elektrodinamika Sploshnykh Sred (Moscow: Fizmatlit, 2005)
Abrikosov A A Fundamentals Of The Theory Of Metals (Mineola, NY: Dover Publ., 2017); Translated from Russian, Abrikosov A A Osnovy Teorii Metallov (Moscow: Fizmatlit, 2010)
Arakelian S M et al Vvedenie V Femtonanofotoniku: Fundamental’nye Osnovy I Lazernye Metody Upravlyaemogo Polucheniya I Diagnostiki Nanostrukturirovannykh Materialov (Introduction To Femtonanophotonics: Fundamental Principles And Laser Methods For Controlled Production And Diagnostics Of Nanostructured Materials, Exec. Ed. S M Arakelian) (Moscow: Logos, 2015)
Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980); Translated from Russian, Landau L D, Lifshitz E M Statisticheskaya Fizika Vol. 1 (Moscow: Fizmatlit, 2002)
Gantmakher V F Electrons And Disorder In Solids (Oxford: Oxford Univ. Press, 2005); Translated from Russian, Gantmakher V F Elektrony V Neuporyadochennykh Sredakh (Moscow: Fizmatlit, 2013)
Ignatov A N Nanoelektronika. Sostoyanie I Perspektivy Razvitiya (Nanoelectronics. Status And Development Prospects) (Moscow: Flinta, 2012)
Dragunov V P, Neizvestnyi I G, Gridchin V A Osnovy Nanoelektroniki (Fundamentals Of Nanoelectronics) (Moscow: Logos, 2011)
Prazdnikov Yu E et al Moscow Univ. Phys. Bull.59 (5) 26 (2004); Prazdnikov Yu E et al Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. (5) 37 (2004)
Ivanenko I P, Krasnoshchekov S V, Pavlikov A V Semiconductors52 907 (2018); Ivanenko I P, Krasnoshchekov S V, Pavlikov A V Fiz. Tekh. Poluprovodn.52 768 (2018)
Bukharov D N, Kucherik A O, Arakelian S M J. Adv. Mater. Technol.8 (3) 227 (2023)
Grigoriev I S, Meilikhov E Z (Eds) Handbook Of Physical Quantities (Boca Raton, FL: CRC Press, 1997); Translated from Russian, Grigoriev I S, Meilikhov E Z (Eds) Fizicheskie Velichiny: Spravochnik (Moscow: Energoatomizdat, 1991)