Issues

 / 

2024

 / 

January

  

Conferences and symposia


Quantum cascade lasers for the 8-μm spectral range: technology, design, and analysis

  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  b,  c,  c,  c,  c,  c,  b, d,  a,  b, d,  b, e,  a
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Connector Optics LLC, Domostroitelnaya str., 16 lit B, St. Petersburg, 194292, Russian Federation
c M.F. Stelmakh POLYUS Research and Development Institute, ul. Vvedenskogo 3, Moscow, 117342, Russian Federation
d ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
e Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8, korp. 3, lit. A, St. Petersburg, 194021, Russian Federation

Quantum cascade lasers (QCLs) have received enormous attention from the scientific community due to their broad range of applications in a wide variety of industries, agriculture, healthcare, environmental protection, and many other scientific and technical fields. In this article, in addition to a review of the main applications and the state of research and development of high-power QCLs in the mid-infrared range, we consider the features of their manufacturing technology that make it possible to obtain a high peak power and discuss the effect of overheating of the active region on the output optical power and spectral characteristics. A comparison is made of the characteristics of QCLs with the same cavity parameters but with different active regions made on the basis of substrate-matched or strained heteropairs, which provides a different energy barrier between the upper laser level and the continuum. It is shown that the use of strained heteropairs in the active region of a QCL provides an almost twofold increase in the characteristic temperature T0 as well as a significantly higher efficiency and an increase in the maximum output optical power to over 21 W, which is a world record for a single stripe QCL with a 8μm spectral range.

Fulltext pdf (875 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.05.039543
Keywords: quantum cascade laser, heterostructure, mid-infrared range, chirp, heat sink
PACS: 42.55.Px, 42.60.−v, 78.67.Pt (all)
DOI: 10.3367/UFNe.2023.05.039543
URL: https://ufn.ru/en/articles/2024/1/i/
001198734600005
2-s2.0-85186555343
2024PhyU...67...92D
Citation: Dudelev V V, Cherotchenko E D, Vrubel I I, Mikhailov D A, Chistyakov D V, Mylnikov V Yu, Losev S N, Kognovitskaya E A, Babichev A V, Lutetskiy A V, Slipchenko S O, Pikhtin N A, Abramov A V, Gladyshev A G, Podgaetskiy K A, Andreev A Yu, Yarotskaya I V, Ladugin M A, Marmalyuk A A, Novikov I I, Kuchinskii V I, Karachinsky L Ya, Egorov A Yu, Sokolovskii G S "Quantum cascade lasers for the 8-μm spectral range: technology, design, and analysis" Phys. Usp. 67 92–98 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, September 2023, 22nd, May 2023

Оригинал: Дюделев B B, Черотченко Е Д, Врубель И И, Михайлов Д А, Чистяков Д В, Мыльников В Ю, Лосев С Н, Когновицкая Е А, Бабичев А В, Лютецкий А В, Слипченко С О, Пихтин Н А, Абрамов А В, Гладышев А Г, Подгаецкий К А, Андреев А Ю, Яроцкая И В, Ладугин М А, Мармалюк А А, Новиков И И, Кучинский В И, Карачинский Л Я, Егоров А Ю, Соколовский Г С «Квантово-каскадные лазеры для спектрального диапазона 8 мкм: технология, дизайн и анализ» УФН 194 98–105 (2024); DOI: 10.3367/UFNr.2023.05.039543

References (60) Cited by (4) Similar articles (20) ↓

  1. A.A. Belyanin, D. Deppe et alNew semiconductor laser designs and the exploratory investigation of the terahertz frequency rangePhys. Usp. 46 986–992 (2003)
  2. S.Yu. Mironov, E.A. Khazanov “Post-compression of a second harmonic pulse: a way to increase the peak power and temporal contrast of ultrahigh-power laser pulsesPhys. Usp. 67 99–103 (2024)
  3. Yu.M. Popov “The early history of the injection laserPhys. Usp. 54 96–100 (2011)
  4. A.A. Andronov, M.N. Drozdov et alTransport in weak barrier superlattices and the problem of the terahertz Bloch oscillatorPhys. Usp. 46 755–758 (2003)
  5. A.V. Masalov “Optical Department of the Lebedev Physical Institute: early work on lasersPhys. Usp. 54 87–91 (2011)
  6. S.V. Ivanov, P.S. Kop’ev, A.A. Toropov “Blue-green lasers based on short-period superlattices in II-VI compoundsPhys. Usp. 42 399–402 (1999)
  7. E.A. Khazanov “Thermooptics of magnetoactive medium: Faraday isolators for high average power lasersPhys. Usp. 59 886–909 (2016)
  8. S.P. Vyatchanin “Parametric oscillatory instability in laser gravitational antennasPhys. Usp. 55 302–305 (2012)
  9. A.P. Vinogradov, E.S. Andrianov et alQuantum plasmonics of metamaterials: loss compensation using spasersPhys. Usp. 55 1046–1053 (2012)
  10. Plasmonics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 21 February 2012)Phys. Usp. 55 1035–1058 (2012)
  11. A.A. Manenkov “Self-focusing of laser pulses: current state and future prospectsPhys. Usp. 54 100–104 (2011)
  12. O.N. Krokhin “Electric power transmission using laser radiationPhys. Usp. 49 425–428 (2006)
  13. V.M. Ustinov, N.A. Maleev et alScientific session of the Division of General Physics and Astronomy of the Russian Academy of Sciences (31 January, 2001)Phys. Usp. 44 813–815 (2001)
  14. I.L. Krestnikov, V.V. Lundin et alHeterostructures based on nitrides of group III elements: technical processes, properties, and light-emitting devicesPhys. Usp. 44 815–816 (2001)
  15. V.M. Ustinov, N.A. Maleev et alVertical-cavity emitting devices with quantum-dot structuresPhys. Usp. 44 813–815 (2001)
  16. S.Yu. Mironov, A.V. Andrianov et alSpatio-temporal shaping of photocathode laser pulses for linear electron acceleratorsPhys. Usp. 60 1039–1050 (2017)
  17. V.S. Edel’man “The development of scanning tunneling microscopySov. Phys. Usp. 34 (3) 272–273 (1991)
  18. S.V. Gaponov “Ultrathin solid-state films and multilayered structures: methods of fabrication, study, and applicationsSov. Phys. Usp. 28 522–524 (1985)
  19. Zh.I. Alferov, D. Bimberg et alStrained-submonolayer and quantum-dot superstructuresPhys. Usp. 38 215–216 (1995)
  20. I.V. Turchin “Methods of biomedical optical imaging: from subcellular structures to tissues and organsPhys. Usp. 59 487–501 (2016)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions