Issues

 / 

2024

 / 

January

  

Conferences and symposia


Quantum cascade lasers for the 8-μm spectral range: technology, design, and analysis

  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  a,  b,  c,  c,  c,  c,  c,  b, d,  a,  b, d,  b, e,  a
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Connector Optics LLC, Domostroitelnaya str., 16 lit B, St. Petersburg, 194292, Russian Federation
c M.F. Stelmakh POLYUS Research and Development Institute, ul. Vvedenskogo 3, Moscow, 117342, Russian Federation
d ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
e Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8, korp. 3, lit. A, St. Petersburg, 194021, Russian Federation

Quantum cascade lasers (QCLs) have received enormous attention from the scientific community due to their broad range of applications in a wide variety of industries, agriculture, healthcare, environmental protection, and many other scientific and technical fields. In this article, in addition to a review of the main applications and the state of research and development of high-power QCLs in the mid-infrared range, we consider the features of their manufacturing technology that make it possible to obtain a high peak power and discuss the effect of overheating of the active region on the output optical power and spectral characteristics. A comparison is made of the characteristics of QCLs with the same cavity parameters but with different active regions made on the basis of substrate-matched or strained heteropairs, which provides a different energy barrier between the upper laser level and the continuum. It is shown that the use of strained heteropairs in the active region of a QCL provides an almost twofold increase in the characteristic temperature T0 as well as a significantly higher efficiency and an increase in the maximum output optical power to over 21 W, which is a world record for a single stripe QCL with a 8μm spectral range.

Fulltext pdf (875 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.05.039543
Keywords: quantum cascade laser, heterostructure, mid-infrared range, chirp, heat sink
PACS: 42.55.Px, 42.60.−v, 78.67.Pt (all)
DOI: 10.3367/UFNe.2023.05.039543
URL: https://ufn.ru/en/articles/2024/1/i/
001198734600005
2-s2.0-85186555343
2024PhyU...67...92D
Citation: Dudelev V V, Cherotchenko E D, Vrubel I I, Mikhailov D A, Chistyakov D V, Mylnikov V Yu, Losev S N, Kognovitskaya E A, Babichev A V, Lutetskiy A V, Slipchenko S O, Pikhtin N A, Abramov A V, Gladyshev A G, Podgaetskiy K A, Andreev A Yu, Yarotskaya I V, Ladugin M A, Marmalyuk A A, Novikov I I, Kuchinskii V I, Karachinsky L Ya, Egorov A Yu, Sokolovskii G S "Quantum cascade lasers for the 8-μm spectral range: technology, design, and analysis" Phys. Usp. 67 92–98 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, September 2023, 22nd, May 2023

Оригинал: Дюделев B B, Черотченко Е Д, Врубель И И, Михайлов Д А, Чистяков Д В, Мыльников В Ю, Лосев С Н, Когновицкая Е А, Бабичев А В, Лютецкий А В, Слипченко С О, Пихтин Н А, Абрамов А В, Гладышев А Г, Подгаецкий К А, Андреев А Ю, Яроцкая И В, Ладугин М А, Мармалюк А А, Новиков И И, Кучинский В И, Карачинский Л Я, Егоров А Ю, Соколовский Г С «Квантово-каскадные лазеры для спектрального диапазона 8 мкм: технология, дизайн и анализ» УФН 194 98–105 (2024); DOI: 10.3367/UFNr.2023.05.039543

References (60) ↓ Cited by (4) Similar articles (20)

  1. Vaks V L et al Proc. SPIE 9934 99340E (2016)
  2. Cousin P et al Instrumentation And Measurement Technologies For Water Cycle Management (Springer Water, Eds A D Mauro, A Scozzari, F Soldovieri) (Cham: Springer, 2022) p. 251-277
  3. Nabiev S S, Palkina L A The Atmosphere And Ionosphere: Elementary Processes, Monitoring, And Ball Lightning (Physics of Earth and Space Environments, Eds V L Bychkov, G V Golubkov, A I Nikitin) (Cham: Springer, 2014) p. 113-200
  4. Moravek A et al Atmos. Meas. Tech. 12 6059 (2019)
  5. Kolker D B et al 2022 Intern. Conf. Laser Optics, ICLO, 20-24 June 2022, Saint Petersburg, Russian Federation
  6. Kumar C, Patel N Proc. SPIE 8268 826802 (2012)
  7. Schwarm K K et al Appl. Phys. B 126 9 (2020)
  8. Vaks V L et al Phys. Usp. 57 684 (2014); Vaks V L et al Usp. Fiz. Nauk 184 739 (2014)
  9. Takeuchi E B et al Proc. SPIE 6741 674104 (2007)
  10. Yang K et al Electron. Lett. 57 665 (2021)
  11. Gopinath S, Ashok P, Ganesh Madhan M Laser Phys. Lett. 18 065301 (2021)
  12. Pang X et al Phys. Status Solidi A 218 2000407 (2021)
  13. Kazarinov R F, Suris R A Sov. Phys. Semicond. 5 707 (1971); Kazarinov R F, Suris R A Fiz. Tekh. Poluprovodn. 5 797 (1971)
  14. Faist J et al Science 264 553 (1994)
  15. Vurgaftman I et al J. Phys. D 48 123001 (2015)
  16. Grillot F et al Proc. SPIE 12430 1243005 (2023)
  17. Meyer J R et al Photonics 7 (3) 75 (2020)
  18. Nguyen Van H et al Photonics 6 (1) 31 (2019)
  19. Loghmari Z et al Appl. Phys. Lett. 115 151101 (2019)
  20. Loghmari Z et al Electron. Lett. 55 144 (2019)
  21. Wen B, Ban D Prog. Quantum Electron. 80 100363 (2021)
  22. Jin Y, Reno J L, Kumar S Optica 7 708 (2020)
  23. Kainz M A et al Opt. Express 27 20688 (2019)
  24. Bosco L et al Appl. Phys. Lett. 115 010601 (2019)
  25. Khalatpour A et al Nat. Photon. 15 16 (2021)
  26. Belkin M A et al Nat. Photon. 1 288 (2007)
  27. Lu Q et al Nat. Commun. 10 2403 (2019)
  28. Commin J P et al Appl. Phys. Lett. 97 031108 (2010)
  29. Bandyopadhyay N et al Appl. Phys. Lett. 101 241110 (2012)
  30. Bai Y et al Appl. Phys. Lett. 95 221104 (2009)
  31. Heydari D et al Appl. Phys. Lett. 106 091105 (2015)
  32. Slivken S et al Appl. Phys. Lett. 81 4321 (2002)
  33. Bandyopadhyay N et al Appl. Phys. Lett. 105 071106 (2014)
  34. Maulini R et al Opt. Express 19 17203 (2011)
  35. Cherotchenko E et al Nanomaterials 12 3971 (2022)
  36. Xu S et al Appl. Phys. Lett. 121 171103 (2022)
  37. Slivken S et al Appl. Phys. Lett. 80 4091 (2002)
  38. Wang C A et al J. Cryst. Growth 370 212 (2013)
  39. Razeghi M et al J. Phys. 11 125017 (2009)
  40. Cristobal E et al Appl. Phys. Lett. 122 141108 (2023)
  41. Wang H et al Chinese Phys. B 30 124202 (2021)
  42. Xie F et al IEEE J. Select. Top. Quantum Electron. 19 1200407 (2013)
  43. Huang X, Charles W O, Gmachl C Opt. Express 19 8297 (2011)
  44. Fujita K et al Appl. Phys. Lett. 97 201109 (2010)
  45. Szerling A, Slivken S, Razeghi M Opto-Electron. Rev. 25 (3) 205 (2017)
  46. Babichev A V Tech. Phys. Lett. 46 442 (2020); Babichev A V Pis’ma Zh. Tekh. Fiz. 46 (9) 35 (2020)
  47. Evans A et al Appl. Phys. Lett. 91 071101 (2007)
  48. Bai Y et al Appl. Phys. Lett. 97 251104 (2010)
  49. Wang F et al Opt. Express 28 17532 (2020)
  50. Babichev A V et al Semiconductors 52 1082 (2018); Babichev A V et al Fiz. Tekh. Poluprovodn. 52 954 (2018)
  51. Howard S S et al IEEE J. Select. Top. Quantum Electron. 13 1054 (2007)
  52. Babichev A V et al Bull. Russ. Acad. Sci. Phys. 87 839 (2023); Babichev A V et al Izv. Ross. Akad. Nauk. Ser. Fiz. 87 855 (2023)
  53. Lu Q et al Sci. Rep. 6 23595 (2016)
  54. Dudelev V V et al Quantum Electron. 50 989 (2020); Dudelev V V et al Kvantovaya Elektron. 50 989 (2020)
  55. Vrubel I I et al "QCL active region overheat in pulsed mode: effects of non-equilibrium heat dissipation on laser performance" arXiv:2308.10013
  56. Goryunova N A, Kesamanly F P, Nasledov D N Semicond. Semimet. 4 413 (1968)
  57. Lee H K et al Phys. Status Solidi A 206 356 (2009)
  58. Gundogdu S et al Opt. Express 2 6572 (2018)
  59. Dudelev V V et al 2020 Intern. Conf. Laser Optics, ICLO, 02-06 November 2020, St. Petersburg, Russia
  60. Dudelev V V et al 2019 Conf. on Lasers and Electro-Optics Europe and European Quantum Electronics Conf. CLEO/Europe-EQEC, 23-27 June 2019, Munich, Germany

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions