Issues

 / 

2022

 / 

June

  

Instruments and methods of investigation


Three-dimensional fluorescence nanoscopy of single quantum emitters based on the optics of spiral light beams

 a, b,  c,  c,  d, a,  c,  d, a, e, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
c Samara Branch of the P.N. Lebedev Physics Institute, Russian Academy of Sciences, Novo-Sadovaya str. 221, Samara, 443011, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e Moscow State Pedagogical University, M. Pirogovskay, 1, Moscow, 119435, Russian Federation

Far-field superresolution fluorescence microscopy (nanoscopy), awarded the Nobel Prize in Chemistry in 2014, has become one of the most powerful tools in multidisciplinary applications of photonics. In this paper, we discuss the technique of three-dimensional nanoscopy with the detection of transformed fluorescence images of single quantum emitters (using the example of semiconductor colloidal quantum dots, QDs). Nanoscale spatial resolution when reconstructing all three coordinates of single QDs is achieved by the instrumental modification of the point spread function using highly efficient light phase spatial modulators (diffractive optical elements, DOEs). DOE phase distributions, which ensure the formation of two-lobe light fields (with rotation of the intensity distribution during light propagation), were obtained on the basis of the optics of spiral light beams. The question of calculating DOEs that provide the best conversion efficiency of light beams is discussed. Theoretical and experimental analyses of the accuracy of the method were carried out depending on the experimental parameters: QD photoluminescence intensity, signal acquisition time, laser excitation power, and the instrumental function of the microscope objective. It is shown that, for the studied CdSeS/ZnS QDs, the accuracy of determining the coordinates can reach values of ∼ 10 nm at exposure times of ∼ 100 ms.

Fulltext pdf (322 KB)
To the readers pdf (88 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.038982
Keywords: luminescence, microscopy, nanoscopy, diffraction limit, spatial resolution, single molecule, quantum dot, point spread function, adaptive optics, diffractive optical element, Laguerre—Gauss modes, spiral beams, double-helix point spread function, DHPSF, quantum optics, nanodiagnostics, sensorics
PACS: 42.79.−e, 78.55.−m, 78.67.Hc (all)
DOI: 10.3367/UFNe.2021.05.038982
URL: https://ufn.ru/en/articles/2022/6/d/
001098556300002
2-s2.0-85173944206
2022PhyU...65..617E
Citation: Eremchev I Yu, Prokopova D V, Losevskii N N, Mynzhasarov I T, Kotova S P, Naumov A V "Three-dimensional fluorescence nanoscopy of single quantum emitters based on the optics of spiral light beams" Phys. Usp. 65 617–626 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, March 2021, 3rd, May 2021

Оригинал: Ерёмчев И Ю, Прокопова Д В, Лосевский Н Н, Мынжасаров И Т, Котова С П, Наумов А В «Трёхмерная флуоресцентная наноскопия одиночных квантовых излучателей на основе оптики спиральных пучков света» УФН 192 663–673 (2022); DOI: 10.3367/UFNr.2021.05.038982

References (33) ↓ Cited by (3) Similar articles (10)

  1. Moerner W E Angew. Chem. Int. Edit. 54 8067 (2015)
  2. Betzig E Angew. Chem. Int. Edit. 54 8034 (2015)
  3. Hell S W Angew. Chem. Int. Edit. 54 8054 (2015)
  4. Möckl L, Moerner W E J. Am. Chem. Soc. 142 17828 (2020)
  5. Naumov A, Eremchev I Yu, Gorshelev A A Eur. Phys. J. D 68 348 (2014)
  6. Naumov A V Phys. Usp. 56 605 (2013); Naumov A V Usp. Fiz. Nauk 183 633 (2013)
  7. Huang B et al Science 319 810 (2008)
  8. Liu L X et al Laser Optoelectron. Prog. 57 14 (2020)
  9. Maiorova A M Photonics Russia 12 134 (2018)
  10. Khonina S N et al J. Mod. Opt. 46 227 (1999)
  11. Abramochkin E G, Volostnikov V G Phys. Usp. 47 1177 (2004); Abramochkin E G, Volostnikov V G Usp. Fiz. Nauk 174 1273 (2004)
  12. Pavani S R P, Piestun R Opt. Express 16 22048 (2008)
  13. Volostnikov V G Phys. Usp. 55 412 (2012); Volostnikov V G Usp. Fiz. Nauk 182 442 (2012)
  14. Shechtman Y et al Nano Lett. 15 4194 (2015)
  15. Prokopova D V et al Bull. Russ. Acad. Sci. Phys. 83 1453 (2019); Prokopova D V et al Izv. Ross. Akad. Nauk Ser. Fiz. 83 1612 (2019)
  16. Pavani S R P et al Proc. Natl. Acad. Sci. USA 106 2995 (2009)
  17. von Diezmann L, Shechtman Y, Moerner W E Chem. Rev. 117 7244 (2017)
  18. Baev A A et al Bull. Russ. Acad. Sci. Phys. 82 1034 (2018); Baev A A et al Izv. Ross. Akad. Nauk Ser. Fiz. 82 1140 (2018)
  19. Eremchev I Yu et al JETP Lett. 108 30 (2018); Eremchev I Yu et al Pis’ma Zh. Eksp. Teor. Fiz. 108 26 (2018)
  20. Möckl L, Roy A R, Moerner W E Biomed. Opt. Express 11 1633 (2020)
  21. Razumov V F Phys. Usp. 59 1258 (2016); Razumov V F Usp. Fiz. Nauk 186 1368 (2016)
  22. Arzhanov A I et al Photonics Russia 15 622 (2021)
  23. Arzhanov A I et al Photonics Russia 16 96 (2022)
  24. Kulik S I et al J. Appl. Spectrosc. 85 916 (2018); Kulik S I et al Zh. Prikl. Spektrosk. 85 814 (2018)
  25. Eremchev I Yu, Eremchev M Yu, Naumov A V Phys. Usp. 62 294 (2019); Eremchev I Yu, Eremchev M Yu, Naumov A V Usp. Fiz. Nauk 189 312 (2019)
  26. Razueva E, Abramochkin E J. Opt. Soc. Am. A 36 1089 (2019)
  27. Volostnikov V G et al Bull. Russ. Acad. Sci. Phys. 80 766 (2016); Volostnikov V G et al Izv. Ross. Akad. Nauk Ser. Fiz. 80 841 (2016)
  28. Vorontsov E N et al Bull. Lebedev Phys. Inst. 45 (3) 71 (2018); Vorontsov E N et al Kr. Soobshch. Fiz. 45 (3) 9 (2018)
  29. Prokopova D V, Kotova S P Photonics Russia 14 170 (2020)
  30. Mortensen K I et al Nat. Meth. 7 377 (2010)
  31. Efros A L, Rosen M Phys. Rev. Lett. 78 1110 (1997)
  32. Frantsuzov P A, Vólkan-Kacsó S, Jankó B Phys. Rev. Lett. 103 207402 (2009)
  33. Osad’ko I S, Eremchev I Yu, Naumov A V J. Phys. Chem. C 119 22646 (2015)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions