Issues

 / 

2021

 / 

June

  

Reviews of topical problems


Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects

  a, b, c
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b St. Petersburg Chemical-Pharmaceutical Academy, ul. prof. Popova 14, St. Petersburg, 197376, Russian Federation
c Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya st. 29, St. Petersburg, 195251, Russian Federation

Graphite-like (metal!) regions and diamond-like (dielectric!) regions in carbon nanostructures are very closely spaced. Based on this unique feature, a model of thermal emf produced due to the drag of electrons by ballistic phonons is developed and a model of thermal conduction during heat transfer through the graphite-like/diamond-like region interface is proposed. Experiments with a thermoelectric generator based on film carbon nanostructures are analyzed. Models of a thermoelectric generator based on a composite of a graphite-like matrix containing diamond nanoparticles and graphene impurities are proposed. These models both demonstrate the above-mentioned phenomena and predict the achievement of the maximum thermoelectric conversion efficiency.

Fulltext pdf (951 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038795
Keywords: thermoelectric generator, electron--phonon interaction, carbon nanostructures, ballistic phonon drag of electrons, graphite-like region, diamond-like region, heat transfer through the graphite-like/diamond-like region interface, composite of a graphite-like matrix with inclusions of diamond nanoparticles, graphene, thermoelectric generator efficiency
PACS: 07.20.Pe, 44.10.+i, 65.80.Ck, 72.20.Pa, 73.40.Ns (all)
DOI: 10.3367/UFNe.2020.06.038795
URL: https://ufn.ru/en/articles/2021/6/a/
000691293300001
2-s2.0-85114960547
2021PhyU...64..535E
Citation: Eidelman E D "Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects" Phys. Usp. 64 535–557 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, April 2020, revised: 26th, May 2020, 26th, June 2020

Оригинал: Эйдельман Е Д «Термоэлектрический эффект и термоэлектрический генератор на основе углеродных наноструктур: достижения и перспективы» УФН 191 561–585 (2021); DOI: 10.3367/UFNr.2020.06.038795

References (206) Cited by (3) Similar articles (20) ↓

  1. A.V. Dmitriev, I.P. Zvyagin “Current trends in the physics of thermoelectric materialsPhys. Usp. 53 789–803 (2010)
  2. E.D. Eidelman, A.V. Arkhipov “Field emission from carbon nanostructures: models and experimentPhys. Usp. 63 648–667 (2020)
  3. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical propertiesPhys. Usp. 54 227–258 (2011)
  4. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materialsPhys. Usp. 57 970–989 (2014)
  5. E.D. Eidel’man “Excitation of an electric instability by heatingPhys. Usp. 38 1231–1246 (1995)
  6. A.P. Zhernov, A.V. Inyushkin “Kinetic coefficients in isotopically disordered crystalsPhys. Usp. 45 527–552 (2002)
  7. A.F. Barabanov, Yu.M. Kagan et alThe Hall effect and its analogsPhys. Usp. 58 446–454 (2015)
  8. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocompositesPhys. Usp. 58 33–60 (2015)
  9. M.A. Krivoglaz “Fluctuon states of electronsSov. Phys. Usp. 16 856–877 (1974)
  10. P.S. Zyryanov, G.I. Guseva “Quantum theory of thermomagnetic phenomena in metals and semiconductorsSov. Phys. Usp. 11 538–563 (1969)
  11. K.V. Larionov, P.B. Sorokin “Investigation of atomically thin films: state of the artPhys. Usp. 64 28–47 (2021)
  12. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistryPhys. Usp. 61 645–691 (2018)
  13. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospectsPhys. Usp. 61 1139–1174 (2018)
  14. A.V. Eletskii, A.A. Knizhnik et alElectrical characteristics of carbon nanotube doped compositesPhys. Usp. 58 209–251 (2015)
  15. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithographyPhys. Usp. 56 643–682 (2013)
  16. V.I. Balykin, P.N. Melentiev “Optics and spectroscopy of a single plasmonic nanostructurePhys. Usp. 61 133–156 (2018)
  17. Yu.E. Lozovik, A.M. Popov “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and conesPhys. Usp. 40 717–737 (1997)
  18. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systemsPhys. Usp. 56 973–998 (2013)
  19. M.I. Rabinovich, M.K. Muezzinoglu “Nonlinear dynamics of the brain: emotion and cognitionPhys. Usp. 53 357–372 (2010)
  20. A.V. Eletskii “Carbon nanotube-based electron field emittersPhys. Usp. 53 863–892 (2010)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions