Reviews of topical problems

Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects

  a, b, c
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b St. Petersburg Chemical-Pharmaceutical Academy, ul. prof. Popova 14, St. Petersburg, 197376, Russian Federation
c Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya st. 29, St. Petersburg, 195251, Russian Federation

Graphite-like (metal!) regions and diamond-like (dielectric!) regions in carbon nanostructures are very closely spaced. Based on this unique feature, a model of thermal emf produced due to the drag of electrons by ballistic phonons is developed and a model of thermal conduction during heat transfer through the graphite-like/diamond-like region interface is proposed. Experiments with a thermoelectric generator based on film carbon nanostructures are analyzed. Models of a thermoelectric generator based on a composite of a graphite-like matrix containing diamond nanoparticles and graphene impurities are proposed. These models both demonstrate the above-mentioned phenomena and predict the achievement of the maximum thermoelectric conversion efficiency.

Fulltext is available at IOP
Keywords: thermoelectric generator, electron--phonon interaction, carbon nanostructures, ballistic phonon drag of electrons, graphite-like region, diamond-like region, heat transfer through the graphite-like/diamond-like region interface, composite of a graphite-like matrix with inclusions of diamond nanoparticles, graphene, thermoelectric generator efficiency
PACS: 07.20.Pe, 44.10.+i, 65.80.Ck, 72.20.Pa, 73.40.Ns (all)
DOI: 10.3367/UFNe.2020.06.038795
Citation: Eidelman E D "Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects" Phys. Usp. 64 535–557 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, April 2020, revised: 26th, May 2020, 26th, June 2020

Оригинал: Эйдельман Е Д «Термоэлектрический эффект и термоэлектрический генератор на основе углеродных наноструктур: достижения и перспективы» УФН 191 561–585 (2021); DOI: 10.3367/UFNr.2020.06.038795

References (206) Similar articles (20) ↓

  1. A.V. Dmitriev, I.P. Zvyagin “Current trends in the physics of thermoelectric materials53 789–803 (2010)
  2. E.D. Eidelman, A.V. Arkhipov “Field emission from carbon nanostructures: models and experiment63 648–667 (2020)
  3. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  4. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  5. E.D. Eidel’man “Excitation of an electric instability by heating38 1231–1246 (1995)
  6. A.P. Zhernov, A.V. Inyushkin “Kinetic coefficients in isotopically disordered crystals45 527–552 (2002)
  7. A.F. Barabanov, Yu.M. Kagan et alThe Hall effect and its analogs58 446–454 (2015)
  8. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocomposites58 33–60 (2015)
  9. M.A. Krivoglaz “Fluctuon states of electrons16 856–877 (1974)
  10. P.S. Zyryanov, G.I. Guseva “Quantum theory of thermomagnetic phenomena in metals and semiconductors11 538–563 (1969)
  11. K.V. Larionov, P.B. Sorokin “Investigation of atomically thin films: state of the art64 28–47 (2021)
  12. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  13. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry61 645–691 (2018)
  14. A.V. Eletskii, A.A. Knizhnik et alElectrical characteristics of carbon nanotube doped composites58 209–251 (2015)
  15. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  16. V.I. Balykin, P.N. Melentiev “Optics and spectroscopy of a single plasmonic nanostructure61 133–156 (2018)
  17. Yu.E. Lozovik, A.M. Popov “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones40 717–737 (1997)
  18. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  19. A.V. Eletskii “Carbon nanotube-based electron field emitters53 863–892 (2010)
  20. M.I. Rabinovich, M.K. Muezzinoglu “Nonlinear dynamics of the brain: emotion and cognition53 357–372 (2010)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions