Issues

 / 

2021

 / 

June

  

Reviews of topical problems


Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects

  a, b, c
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b St. Petersburg Chemical-Pharmaceutical Academy, ul. prof. Popova 14, St. Petersburg, 197376, Russian Federation
c Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya st. 29, St. Petersburg, 195251, Russian Federation

Graphite-like (metal!) regions and diamond-like (dielectric!) regions in carbon nanostructures are very closely spaced. Based on this unique feature, a model of thermal emf produced due to the drag of electrons by ballistic phonons is developed and a model of thermal conduction during heat transfer through the graphite-like/diamond-like region interface is proposed. Experiments with a thermoelectric generator based on film carbon nanostructures are analyzed. Models of a thermoelectric generator based on a composite of a graphite-like matrix containing diamond nanoparticles and graphene impurities are proposed. These models both demonstrate the above-mentioned phenomena and predict the achievement of the maximum thermoelectric conversion efficiency.

Fulltext pdf (951 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038795
Keywords: thermoelectric generator, electron--phonon interaction, carbon nanostructures, ballistic phonon drag of electrons, graphite-like region, diamond-like region, heat transfer through the graphite-like/diamond-like region interface, composite of a graphite-like matrix with inclusions of diamond nanoparticles, graphene, thermoelectric generator efficiency
PACS: 07.20.Pe, 44.10.+i, 65.80.Ck, 72.20.Pa, 73.40.Ns (all)
DOI: 10.3367/UFNe.2020.06.038795
URL: https://ufn.ru/en/articles/2021/6/a/
000691293300001
2-s2.0-85114960547
2021PhyU...64..535E
Citation: Eidelman E D "Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects" Phys. Usp. 64 535–557 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, April 2020, revised: 26th, May 2020, 26th, June 2020

Оригинал: Эйдельман Е Д «Термоэлектрический эффект и термоэлектрический генератор на основе углеродных наноструктур: достижения и перспективы» УФН 191 561–585 (2021); DOI: 10.3367/UFNr.2020.06.038795

References (206) ↓ Cited by (2) Similar articles (20)

  1. Eidelman E D, Vul’ A Ya J. Phys. Condens. Matter 19 266210 (2007)
  2. Gurevich L E Zh. Eksp. Teor. Fiz. 16 193 (1946); Gurevich L E J. Phys. USSR 9 4 (1946)
  3. Chen G Nanoscale Energy Transport And Conversion: A Parallel Treatment Of Electrons, Molecules, Phonons, And Photons (Oxford: Oxford Univ. Press, 2005)
  4. Zhang Z M Nano/Microscale Heat Transfer (New York: McGraw-Hill, 2007)
  5. Chen G Phys. Rev. Lett. 86 2297 (2001)
  6. Chen G J. Heat Transfer 124 320 (2002)
  7. Eidelman E D et al J. Phys. D 50 464007 (2017)
  8. Nikolić B, Allen P B Phys. Rev. B 60 3963 (1999)
  9. Chen G Phys. Rev. B 57 14958 (1998)
  10. Sharvin Yu V Zh. Eksp. Teor. Fiz. 48 984 (1965); Sharvin Yu V Sov. Phys. JETP 21 655 (1965)
  11. Wexler G Proc. Phys. Soc. Lond. 89 927 (1966)
  12. Cola B, Xu J, Fisher T S Int. J. Heat Mass Transfer 52 3490 (2009)
  13. Prasher R, Tong T, Majumdar A Appl. Phys. Lett. 91 143119 (2007)
  14. Prasher R Phys. Rev. B 74 165413 (2006)
  15. Saha S K, Shi L J. Appl. Phys. 101 074304 (2007)
  16. Prasher R Nano Lett. 5 2155 (2005)
  17. Kim W, Majumdar A J. Appl. Phys. 99 084306 (2006)
  18. Kim W et al Phys. Rev. Lett. 96 045901 (2006)
  19. Prasher R S, Phelan P E J. Appl. Phys. 100 063538 (2006)
  20. Prasher R J. Appl. Phys. 100 064302 (2006)
  21. Bahadur V et al J. Heat Transfer 127 664 (2005)
  22. Li D et al Appl. Phys. Lett. 83 2934 (2003)
  23. Lu W, Komvopoulos K Appl. Phys. Lett. 82 2437 (2003)
  24. Yu C et al Proc. of the ASME Summer Heat Transfer Conf., San Francisco, CA, 2005 (Little Falls, NJ: ASME, 2005), paper No. HT2005-72320
  25. Wilson O M et al Phys. Rev. B 66 224301 (2002)
  26. Huxtable S T et al Nat. Mater. 2 731 (2003)
  27. Majumdar A, Reddy P Appl. Phys. Lett. 84 4768 (2004)
  28. Schwab K et al Nature 404 974 (2000)
  29. Mingo N, Broido D A Phys. Rev. Lett. 95 096105 (2005)
  30. Santamore D H, Cross M C Phys. Rev. B 63 184306 (2001)
  31. Chang C-M, Geller M R Phys. Rev. B 71 125304 (2005)
  32. Prasher R, Tong T, Majumdar A Nano Lett. 8 99 (2008)
  33. Milton G W Theory Of Composites (Cambridge: Cambridge Univ. Press, 2002)
  34. Batchelor G K Annu. Rev. Fluid Mech. 6 227 (1974)
  35. Prasher R S et al J. Heat Transfer 125 1170 (2003)
  36. Torquato S Appl. Mech. Rev. 44 (2) 37 (1991)
  37. Rogach A L et al Adv. Funct. Mater. 12 653 (2002)
  38. Chen G, Yang B, Liu W "Engineering nanostructures for energy conversion" Heat Transfer And Fluid Flow In Microscale And Nanoscale Structures (Eds M Faghri, B Sundén) (Southampton: WIT, 2004)
  39. Suzdalev I P Nanotekhnologiya: Fiziko-khimiya Nanoklasterov, Nanostruktur i Nanomaterialov 2-e izd., ispr. (M.: Librokom, 2009)
  40. Moniruzzaman M, Winey K I Macromolecules 39 5194 (2006)
  41. Weber E "Development and modeling of thermally conductive polymer/carbon composites" Ph.D. Thesis (Houghton, MI: Michigan Technological Univ., 2001)
  42. Karayacoubian P "Effective thermal conductivity of composite fluidic thermal interface materials" Thesis of Master of Applied Science (Waterloo, ON: Univ. of Waterloo, 2006)
  43. Bhushah B (Ed.) Springer Handbook Of Nanotechnology 2nd ed. (Berlin: Springer Science+Business Media, 2007)
  44. Rowe D M (Ed.) CRC Handbook Of Thermoelectrics: Macro To Nano (Boca Raton, FL: CRC Press, 2005)
  45. Dresselhaus M et al Adv. Mater. 19 1043 (2007)
  46. Koumoto K, Terasaki I, Funahashi R MRS Bull. 31 206 (2006)
  47. Hicks L D, Dresselhaus M S Phys. Rev. B 47 16631(R) (1993)
  48. Hicks L D, Dresselhaus M S Phys. Rev. B 47 12727 (1993)
  49. Friedman L J. Phys. C 17 3999 (1984)
  50. Tao Z, Friedman L J. Phys. C 18 L455 (1985)
  51. Vashaee D, Shakouri A Phys. Rev. Lett. 92 106103 (2004)
  52. Mahan G D, Woods L M Phys. Rev. Lett. 80 4061 (1998)
  53. Shakouri A, Bowers J E Appl. Phys. Lett. 71 1234 (1997)
  54. Zide J M O et al Phys. Rev. B 74 205335 (2006)
  55. Scherrer H, Scherrer S Thermoelectrics Handbook: Macro To Nano (Ed. D M Rowe) (Boca Raton, FL: CRC Press, 2006), Ch. 27
  56. Kutasov V, Lukyanova L, Vedernikov M Thermoelectrics Handbook: Macro To Nano (Ed. D M Rowe) (Boca Raton, FL: CRC. Taylor and Francis, 2006), Ch. 37
  57. Kuznetsov V L et al J. Mater. Sci. 37 2893 (2002)
  58. Yao T Appl. Phys. Lett. 51 1798 (1987)
  59. Touzelbaev M N et al J. Appl. Phys. 90 763 (2001)
  60. Caylor J C et al Appl. Phys. Lett. 87 023105 (2005)
  61. Beyer H et al Physica E 13 965 (2002)
  62. Kim W et al Appl. Phys. Lett. 88 242107 (2006)
  63. Kim W et al Phys. Rev. Lett. 96 045901 (2006)
  64. Chen G Semicond. Semimet. 71 203 (2001)
  65. Yang R, Chen G Phys. Rev. B 69 195316 (2004)
  66. Poudel B et al Science 320 634 (2008)
  67. Hsu K F et al Science 303 818 (2004)
  68. Fluerial J, Caillat T, Borshchevsky A Proc. of the 13th Intern. Conf. on Thermoelectrics, Kansas City, MO, 30 August - 1 September, 1994 (New York: AIP, 1995) p. 40
  69. Lan Y et al Nano Lett. 9 1419 (2009)
  70. Bux S K et al Adv. Funct. Mater. 19 2445 (2009)
  71. Mingo N et al Nano Lett. 9 711 (2009)
  72. Minnich A J et al Phys. Rev. B 80 155327 (2009)
  73. Wang X et al Appl. Phys. Lett. 93 193121 (2008)
  74. Joshi G et al Nano Lett. 8 4670 (2008)
  75. Ma Y et al Nano Lett. 8 2580 (2008)
  76. Ghosh S et al New J. Phys. 11 095012 (2009)
  77. Balandin A A et al Nano Lett. 8 902 (2008)
  78. Nika D L et al Phys. Rev. B 79 155413 (2009)
  79. Lan J et al Phys. Rev. B 79 115401 (2009)
  80. González J, Perfetto E New J. Phys. 11 095015 (2009)
  81. Zeng G et al Appl. Phys. Lett. 91 263510 (2007)
  82. Mahajan R, Chiu C, Chrysler G Proc. IEEE 94 1476 (2006)
  83. Prasher R et al Intel Tech. J. 9 285 (2005)
  84. Semenyuk V Thermoelectrics Handbook: Macro To Nano (Ed. D M Rowe) (Boca Raton, FL: CRC Press, 2006), Ch. 58-1-58-20
  85. Sanders G H W, Manz A Trends Anal. Chem. 19 364 (2000)
  86. Chowdhury I et al Nat. Nanotechnol. 4 235 (2009)
  87. Meysenc L, Jylhakallio M, Barbosa P IEEE Trans. Power Electron 20 687 (2005)
  88. Majumdar A Nat. Nanotechnol. 4 214 (2009)
  89. Satyala N, Norouzzadeh P, Vashaee D Nanoscale Thermoelectrics (Eds X Wang, Z M Wang) (Cham: Springer Intern. Publ., 2014) p. 93
  90. Crabtree G, Lewis N Phys. Today 60 (3) 37 (2007)
  91. Lim J et al Adv. Mater. 17 1488 (2005)
  92. Fukutani K, Singh R, Shakouri A Thermal Transient Characterization of Packaged Thin Film Microcoolers, Nice, Cote d’Azur, France, 27-29 September, 2006
  93. Ziman J M Principles Of The Theory Of Solids (Cambridge: Univ. Press, 1964); Per. na russk. yaz., Zaiman Dzh Printsipy Teorii Tverdogo Tela (M.: Mir, 1975)
  94. Ziman J M Electrons And Phonons; The Theory Of Transport Phenomena In Solid (Oxford: Clarendon Press, 1960); Per. na russk. yaz., Zaiman Dzh Elektrony i Fonony (M.: IL, 1962)
  95. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Nauka, 1982); Per. na angl. yaz., Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984)
  96. Nolas G et al Principles Of Thermoelectrics: Basics And New Materials Development (Berlin: Springer-Verlag, 2001)
  97. Goldsmid H Thermoelectric Refrigeration (New York: Plenum Press, 1964)
  98. Mahan G, Sales B, Sharp J Phys. Today 50 (3) 42 (1997)
  99. Abelson R Thermoelectrics Handbook: Macro To Nano (Ed. D M Rowe) (Boca Raton, FL: CRC Press, 2006) p. 1, Ch. 56
  100. Vining et al Thermoelectrics Handbook: Macro To Nano (Ed. D M Rowe) (Boca Raton, FL: CRC Press, 2005) p. A1
  101. Sharp J et al Principles Of Thermoelectrics: Basics And New Materials Development (Berlin: Springer-Verlag, 2001)
  102. Vining C Proc. of the European Conf. on Thermoelectrics ECT, Odessa, Ukraine, September 10-12, 2007 (2007) p. 1
  103. Bell L E Science 321 1457 (2008)
  104. Bahk J, Shakouri A "Electron transport engineering by nanostructures for efficient thermoelectrics" Nanoscale Thermoelectrics (Eds X Wang, Z Wang) (Chur: Springer Intern. Publ., 2014) p. 41
  105. Yang R, Chen G Mater. Integration 18 31 (2012)
  106. Ioffe A F Semiconductor Thermoelements And Thermoelectric Cooling (London: Infosearch Ltd., 1957)
  107. Tritt T, Böttner H, Chen L MRS Bull. 33 366 (2008)
  108. Eidel’man E D, Meilakhs A P, Vul’ A Ya "Termoelektricheskii element" Patent na poleznuyu model’ №180604, zayavka №2017143948. Prioritet modeli 14 dekabrya 2017 g. Data gosudarstvennoi registratsii v Gosudarstvennom reestre poleznykh modelei Rossiiskoi Federatsii 19 iyunya 2018 g. Patentoobladatel’: Federal’noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Fiziko-tekhnicheskii institut im. A.F. Ioffe RAN (RU) Opublikovano 19.06.2018. Byull. №17
  109. Eidel’man E D, Shakhov F M, Vul’ A Ya "Termoelektricheskii element" Patent na izobretenie №2628676, zayavka №2016146445. Prioritet izobreteniya 25 noyabrya 2016 g. Data gosudarstvennoi registratsii v Gosudarstvennom reestre izobretenii Rossiiskoi Federatsii 21 avgusta 2017 g. Patentoobladatel’: Federal’noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Fiziko-tekhnicheskii institut im. A.F. Ioffe RAN (RU)
  110. Vul’ A Ya, Eidel’man E D "Termoelektricheskii element" Patent na izobretenie №2376681, zayavka №2008140273. Prioritet izobreteniya 6 oktyabrya 2008 g. Reshenie o vydache patenta na izobretenie ot 21 avgusta 2009 g. Zaregistrirovan v Gosudarstvennom reestre izobretenii Rossiiskoi Federatsii 20 dekabrya 2009 g. Patentoobladatel’: Federal’noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Fiziko-tekhnicheskii institut im. A.F. Ioffe RAN (RU)
  111. Vul’ A Ya, Eidelman E D, Dideikin A T Synthesis, Properties And Applications Of Ultrananocrystalline Diamond (NATO Scientific Ser., Ser. II Mathematics, Physics and Chemistry) Vol. 192 (Eds D Gruen et al) (Berlin: Springer, 2003) p. 383
  112. Aleksenskiy A E, Eydelman E D, Vul’ A Ya Nanosci. Nanotechnol. Lett. 3 68 (2011)
  113. Williams O A et al ACS Nano 4 4824 (2010)
  114. Dideikin A T i dr Zh. Tekh. Fiz. 80 (9) 146 (2010); Dideikin A T et al Tech. Phys. 55 1378 (2010)
  115. Dideykin A et al Diamond Relat. Mater. 20 105 (2011)
  116. Dmitriev A S Vvedenie v Nanoteplofiziku (Nanotekhnologii) (M.: BINOM. Lab. znanii, 2015)
  117. Ashcroft N W, Mermin N D Solid State Physics (New York: Holt, Rinehart and Winston, 1976); Per. na russk. yaz., Ashkroft N, Mermin N Fizika Tverdogo Tela (M.: Mir, 1979)
  118. 15th European Conf. on Thermoelectrics (ECT), Padua, Italy, 25-27 September, 2017; Mater. Today Proc. 8 2214 (2019)
  119. The XVI Interstate Conf. "Thermoelectrics and their Applications-2018" (ISCTA 2018), St. Petersburg, Russia, 8±12 October, 2018
  120. Humphrey T E, Linke H Phys. Rev. Lett. 94 0966011 (2005)
  121. Humphrey T E, O’Dwyer M F, Linke H J. Phys. D 38 2051 (2005)
  122. O’Dwyer M F et al Phys. Rev. B 72 205330 (2005)
  123. O’Dwyer M F, Humphery T E, Linke H Nanotechnology 17 S338 (2006)
  124. O’Dwyer M F et al J. Phys. D 39 4153 (2006)
  125. Vinogradov A Ya i dr Fiz. Tekh. Poluprovodn. 52 775 (2018); Vinogradov A Ya et al Semiconductors 52 914 (2018)
  126. Rabchinskii M K i dr Pis’ma ZhTF 45 (7) 33 (2019); Rabchinskii M K et al Tech. Phys. Lett. 45 339 (2019)
  127. Grudinkin S A et al Nanotechnology 27 395606 (2016)
  128. Gurevich L E Osnovy Fizicheskoi Kinetiki (L. - M.: Gostekhteoretizdat, 1940)
  129. Sommerfeld A, Bethe H A Handbuch Der Physik Vol. 24 (Berlin: Springer-Verlag, 1933) p. 333
  130. Stil’bans L S Fizika Poluprovodnikov (M.: Sov. radio, 1967)
  131. Lifshits E M, Pitaevskii L P Fizicheskaya Kinetika (M.: Nauka, 1989); Per. na angl. yaz., Lifshitz E M, Pitaevskii L P Physical Kinetics (Oxford: Pergamon Press, 1981)
  132. Dideykin A T, Eidelman E D, Vul’ A Ya Solid State Commun. 126 495 (2003)
  133. Landau L D, Lifshits E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (M.: Nauka, 1989); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistics Theory (Oxford: Pergamon Press, 1977)
  134. Zylbersztein A J. Phys. 33 (Suppl. C4) 85 (1972); Per. na russk. yaz., Zil’berstain A Fizika Fononov Bol’shikh Energii (Novosti Fiziki Tverdogo Tela, Vyp. 5) (M.: Mir, 1976) p. 101
  135. Ansel’m A I Vvedenie v Teoriyu Poluprovodnikov (M.: Nauka, 1978); Per. na angl. yaz., Anselm A Introduction To Semiconductor Theory (Englewood Cilffs, NJ: Prenctice-Hall, 1981)
  136. Narayanamurti V et al Phys. Rev. Lett. 43 2012 (1979)
  137. Kidalov S V et al Diamond Relat. Mater. 19 976 (2010)
  138. Kubakaddi S S, Bhargavi K S Phys. Rev. B 82 155410 (2010)
  139. Koniakhin S V, Nalitov A V Phys. Rev. B 94 125403 (2016)
  140. Eidel’man E D Fiz. Tekh. Poluprovodn. 51 944 (2017); Eidelman E D Semiconductors 51 906 (2017)
  141. Khalatnikov I M Zh. Eksp. Teor. Fiz. 22 687 (1952)
  142. Pollack G L Rev. Mod. Phys. 41 48 (1969)
  143. Challis L J J. Phys. C 7 481 (1974)
  144. Swartz E T, Pohl R O Appl. Phys. Lett. 51 2200 (1987)
  145. Stoner R J, Maris H J Phys. Rev. B 48 16373 (1993)
  146. Huberman M L, Overhauser A W Phys. Rev. B 50 2865 (1994)
  147. Mahan G D Phys. Rev. B 79 075408 (2009)
  148. Zhang L et al Phys. Rev. B 83 064303 (2011)
  149. Meilakhs A P, Eidel’man E D Pis’ma ZhETF 97 42 (2013); Meilakhs A P, Eidelman E D JETP Lett. 97 38 (2013)
  150. Meilakhs, A P, Eidel’man E D Pis’ma ZhETF 100 89 (2014); Meilakhs A P, Eidelman E D JETP Lett. 100 81 (2014)
  151. Landau L D, Lifshits E M Statisticheskaya Fizika Vol. 1 6-e izd., ster. (M.: Nauka, 2018); Per. na angl. yaz., Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
  152. Landau L D, Lifshits E M Teoriya Uprugosti 6-e izd. (M.: Nauka, 2007); Per. na angl. yaz., Landau L D, Lifshitz E M Theory Of Elasticity (Oxford: Pergamon Press, 1986)
  153. Ginzburg V L, Shabanskii V P Dokl. Akad. Nauk SSSR 100 445 (1955)
  154. Kaganov M I, Lifshits I M, Tanatarov L V Zh. Eksp. Teor. Fiz. 31 232 (1956); Kaganov M I, Lifshits I M, Tanatarov L V Sov. Phys. JETP 4 173 (1956)
  155. Kogan Sh M Fiz. Tverd. Tela 4 2474 (1962); Kogan Sh M Sov. Phys. Solid State 4 (10) 172 (1962)
  156. Aronov A G, Ioselevich A S Zh. Eksp. Teor. Fiz. 81 1839 (1981); Aronov A G, Ioselevich A S Sov. Phys. JETP 54 974 (1981)
  157. Tian Z, Esfarjani K, Chen G Phys. Rev. B 86 235304 (2012)
  158. Abyzov A M, Kidalov S V, Shakhov F M Fiz. Tverd. Tela 54 196 (2012); Abyzov A M, Kidalov S V, Shakhov F M Phys. Solid State 54 210 (2012)
  159. Lyeo H-K, Cahill D G Phys. Rev. B 73 144301 (2006)
  160. Costescu R M, Wall M A, Cahill D G Phys. Rev. B 67 054302 (2003)
  161. Karr B W et al Phys. Rev. B 61 16137 (2000)
  162. Taylor R E, Morreale J J. Am. Ceram. Soc. 47 (2) 69 (1964)
  163. Meng W J, Eesley G L Thin Solid Films 271 108 (1995)
  164. Patsalas P, Logothetidis S J. Appl. Phys. 90 4725 (2001)
  165. Andrievskii R A, Dashevskii Z M, Kalinnikov G V Pis’ma 30 22 (2004); Andrievsky R A, Dashevsky Z M, Kalinnikov G V Tech. Phys. Lett. 30 11 (2004)
  166. van den Brink A M, Dekker H Phys. Rev. B 51 17842 (1995)
  167. Babenko A Yu, Dideikin A T, Eidel’man E D Fiz. Tverd. Tela 51 410 (2009); Babenko A Yu, Dideykin A T, Eidelman E D Phys. Solid State 51 435 (2009)
  168. Zhao L-D et al Nature 508 373 (2014)
  169. Novikov S V, Burkov A T, Schumann J J. Electron. Mater. 43 2420 (2014)
  170. Heremans J P Nature 508 327 (2014)
  171. Bhattacharyya S et al Nat. Mater. 5 19 (2006)
  172. Barnard A S, Sternberg M J. Mater. Chem. 17 4811 (2007)
  173. Eidelman E D, Meilakhs A P Nanosyst. Phys. Chem. Math. 7 919 (2016)
  174. Eidelman E D et al J. Phys. D 50 464007 (2017)
  175. Zavaritskii N V Zh. Eksp. Teor. Fiz. 75 1873 (1978); Zavaritskii N Sov. Phys. JETP 48 942 (1978)
  176. Kidalov S V, Shakhov F M, Vul A Ya Diamond Relat. Mater. 17 844 (2008)
  177. Shakouri A, Zebarjadi M Thermal Nanosystems And Nanomaterials (Topics in Applied Physics) Vol. 118 (Ed. S Volz) (Heidelberg: Springer, 2009) p. 225
  178. Snyder G J, Toberer E S Nat. Mater. 7 105 (2008)
  179. Majumdar A Science 303 777 (2004)
  180. Minnich A J et al Energy Environ. Sci. 2 466 (2009)
  181. Harman T et al J. Electron. Mater. 34 L19 (2005)
  182. Heremans J P et al Thermoelectricity: Thermoelectric And Thermomagnetic Properties In Low Dimensional And Nanoscale Materials (Berlin: Springer-Verlag, 2007)
  183. Kajikawa T Proc. of the 25th Intern. Conf. Thermoelectrics ICT2006 (Ed. P Rogl) (Vienna: IEEE, 2006) p. 93
  184. Bottner H et al J. Microelectromech. Syst. 13 414 (2004)
  185. Shakouri A Proc. IEEE 94 1613 (2006)
  186. Heremans J Springer Handbook Of Nanotechnology (Ed. B Bhushan) (Berlin: Springer-Verlag, 2007) p. 345
  187. Chen G IEEE Trans. Compon. Packaging Technol. 29 238 (2006)
  188. Koniakhin S V, Eidelman E D Europhys. Lett. 103 37006 (2013)
  189. Koniakhin S V, Eidelman E D Nanosystems Phys. Chem. Math. 5 142 (2014)
  190. Novoselov K S et al Nature 490 192 (2012)
  191. Varlamov A A i dr Usp. Fiz. Nauk 182 1229 (2012); Varlamov A A et al Phys. Usp. 55 1146 (2012)
  192. Jiang J et al Phys. Rev. B 72 235408 (2005)
  193. Mañes J L Phys. Rev. B 76 045430 (2007)
  194. Alofi A, Srivastava G P J. Appl. Phys. 112 013517 (2012)
  195. Klemens P G, Pedraza D F Carbon 32 735 (1994)
  196. Klemens P G Theory Of The A-Plane Thermal Conductivity Of Graphite (Ecklund, Science Of Fullerenes And Carbon Nanotubes) (New York: Academic Press, 1995)
  197. Tomchuk O V et al Diamond Relat. Mater. 103 107670 (2020)
  198. Dideikin A T, Vul’ A Y Front. Phys. 6 149 (2019)
  199. Dideykin A et al Diamond Relat. Mater. 20 105 (2011)
  200. Nikolaeva M N et al Nanosystems Phys. Chem. Math. 8 665 (2017)
  201. Kirilenko D A et al Micron 68 23 (2015)
  202. Nikolaeva M N i dr Zhurn. Prikladnoi Ximii 87 1172 (2014); Nikolaeva M N et al Russ. J. Appl. Chem. 87 1151 (2014)
  203. Aleksenskii A E i dr Zh. Tekh. Fiz. 83 (11) 67 (2013); Aleksenskii A E et al Tech. Phys. 58 1614 (2013)
  204. Koga T, Rabin O, Dresselhaus M S Phys. Rev. B 62 16703 (2000)
  205. Heremans J P et al. "Thermoelectric devices comprising a junction of dissimilar materials, i.e. exhibiting seebeck or peltier effect with or without other thermoelectric effects or thermomagnetic effects; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof" Patent US6670539, MPK H01L35/18, H01L35/34, H01L35/12, n 30.12.2000 Patents for H01L 35
  206. Eidel’man E D, Arkhipov A V Usp. Fiz. Nauk 190 693 (2020); Eidelman E D, Arkhipov A V Phys. Usp. 63 648 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions