Issues

 / 

2021

 / 

October

  

Methodological notes


Why does statistical mechanics 'work' in condensed matter?

 
Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation

The reasons behind the possibility of using the Gibbs distribution in condensed matter are considered. While the basics of statistical mechanics in gases are covered in great detail in many textbooks and reviews, the reasons for using the Gibbs distribution in crystals, glasses, and liquids are rarely considered. Most textbooks still only speak of a qualitative replacement of the mechanical description with a statistical one when considering a very large number of particles. At the same time, it turns out that the Gibbs distribution is not formally applicable to a harmonic crystal of a large number of particles. However, a system of even a small number of coupled anharmonic oscillators can demonstrate all the basic features of thermodynamically equilibrium crystals and liquids. It is the nonlinearity (anharmonism) of vibrations that leads to the mixing of phase trajectories and ergodicity of condensed matter. When the system goes into a state of thermodynamic equilibrium, there are 3 characteristic time scales: the time of thermalization of the system (in fact, the time of establishment of the local Gibbs distribution in momentum space and establishment of the local temperature); the time of establishment of a uniform temperature in the system after contact with the thermostat; and, finally, the time of establishment of ergodicity in the system (in fact, the time of 'sweeping' the entire phase space, including its coordinate part). The genesis of defect formation and diffusion in crystals and glasses, as well as their ergodicity, is discussed.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: Gibbs distribution, ergodicity, local instability, nonlinear oscillations, thermalization, diffusion
PACS: 05.20.−y, 05.45.−a, 05.90.+m, 63.20.K− (all)
DOI: 10.3367/UFNe.2021.03.038956
URL: https://ufn.ru/en/articles/2021/10/e/
Citation: Brazhkin V V "Why does statistical mechanics 'work' in condensed matter?" Phys. Usp. 64 1049–1057 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, August 2020, revised: 11th, March 2021, 29th, March 2021

Оригинал: Бражкин В В «Почему статистическая механика "работает" в конденсированных средах?» УФН 191 1107–1116 (2021); DOI: 10.3367/UFNr.2021.03.038956

References (29) ↓ Cited by (1) Similar articles (20)

  1. Gibbs Dzh V Termodinamika. Statisticheskaya Mekhanika (M.: Nauka, 1982); Gibbs J W The Collected Works Vol. 1 (New Haven, CT: Yale Univ. Press, 1948)
  2. Landau L D, Lifshits E M Statisticheskaya Fizika Vol. 1 (M.: Nauka, 1976); Per. na angl. yaz., Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
  3. Uhlenbeck G E, Ford G W Lectures In Statistical Mechanics (Providence, RI: American Mathematical Society, 1963); Per. na russk. yaz., Ulenbek Dzh, Ford Dzh Lektsii Po Statisticheskoi Mekhanike (M.: Mir, 1965)
  4. Zubarev D N Neravnovesnaya Statisticheskaya Termodinamika (M.: Nauka, 1971); Per. na angl. yaz., Zubarev D N Nonequilibrium Statistical Thermodynamics (New York: Consultants Bureau, 1974)
  5. Bogolyubov N N Izbrannye Trudy Po Statisticheskoi Fizike (M.: Izd-vo MGU, 1979)
  6. Krylov N S Raboty Po Obosnovaniyu Statisticheskoi Fiziki (M. - L.: Izd-vo AN SSSR, 1950); Per. na angl. yaz., Krylov N S Works On The Foundations Of Statistical Physics (Princeton, NJ: Princeton Univ. Press, 1979)
  7. Sinai Ya G Usp. Mat. Nauk 25 (2) 141 (1970); Sinai Ya G Russ. Math. Surv. 25 (2) 137 (1970)
  8. Kozlov V V Ansambli Gibbsa i Neravnovesnaya Statisticheskaya Mekhanika (M. - Izhevsk: RKhD, In-t komp’yut. issled., 2008)
  9. Maccone L Phys. Rev. Lett. 103 080401 (2009)
  10. Menskii M B Usp. Fiz. Nauk 175 413 (2005); Menskii M B Phys. Usp. 48 389 (2005)
  11. Volovich I V Found. Phys. 41 516 (2011)
  12. Martynov G A Usp. Fiz. Nauk 166 1105 (1996); Martynov G A Phys. Usp. 39 1045 (1996)
  13. Sadovskii M V Lektsii Po Statisticheskoi Fizike (M. - Izhevsk: In-t komp’yut. issled., 2003); Per. na angl. yaz., Sadovskii M V Statistical Physics 2nd ed. (Berlin: De Gruyter, 2019)
  14. Zaslavskii G M, Chirikov B V Usp. Fiz. Nauk 105 3 (1971); Zaslavskii G M, Chirikov B V Sov. Phys. Usp. 14 549 (1972)
  15. Zaslavskii G M Stokhastichnost’ Dinamicheskikh Sistem (M.: Nauka, 1984); Per. na angl. yaz., Zaslavsky G M Chaos In Dynamic Systems (New York: Harwood Acad. Publ., 1985)
  16. Kosevich A M, Kovalev A S Vvedenie v Nelineinuyu Fizicheskuyu Mekhaniku (Kiev: Nauk. dumka, 1989)
  17. Manakov S V Zh. Eksp. Teor. Fiz. 67 543 (1974); Manakov S V Sov. Phys. JETP 40 269 (1975)
  18. Gibbs J W (New York: C. Scribner’s Sons, 1902); Per. na russk. yaz., Gibbs Dzh V Osnovnye Printsipy Statisticheskoi Mekhaniki, Izlagaemye so Spetsial’nym Primeneniem k Ratsional’nomu Obosnovaniyu Termodinamiki (M. - Izhevsk: RKhD, 2002)
  19. Sinai Ya G Dokl. Akad. Nauk SSSR 153 1261 (1963); Sinai Ya G Sov. Math. Dokl. 4 1818 (1963)
  20. Arnold V I, Avez A Problèmes Ergodiques De La Mécanique Classique (Paris: Gauthier-Villars, 1967); Per. na angl. yaz., Arnold V I, Avez A Ergodic Problems Of Classical Mechanics (New York: W.A. Benjamin, 1968); Per. na russk. yaz., Arnol’d V I, Avets A Ergodicheskie Problemy Klassicheskoi Mekhaniki (Izhevsk: RKhD, 1999)
  21. Brazhkin V V Usp. Fiz. Nauk 176 745 (2006); Brazhkin V V Phys. Usp. 49 719 (2006)
  22. Fermi E, Pasta J R, Ulam S "Studies of nonlinear problems" Los Alamos Report LA-1940 (Los Alamos, NM: Los Alamos Natl. Lab., 1955); Fermi E, Pasta J, Ulam S The Collected Papers Of Enrico Fermi Vol. 2 (Chicag, IL: The Univ. of Chicago Press, 1965) p. 978; Per. na russk. yaz., Fermi E, Pasta Dzh, Ulam S "Issledovanie nelineinykh zadach" Fermi E. Nauchnye Trudy Vol. 2 (M.: Nauka, 1972) p. 647
  23. Imry Y Introduction To Mesoscopic Physics 2nd ed. (Oxford: Oxford Univ. Press, 2002); Per. na russk. yaz., Imri I Vvedenie v Mezoskopicheskuyu Fiziku (M.: Fizmatlit, 2004)
  24. Zaslavskii G M Usp. Fiz. Nauk 129 211 (1979); Zaslavskii G M Sov. Phys. Usp. 22 788 (1979)
  25. Zaslavskii G M Usp. Fiz. Nauk 131 302 (1980)
  26. Brazhkin V V Usp. Fiz. Nauk 187 1028 (2017); Brazhkin V V Phys. Usp. 60 954 (2017)
  27. Kittel Ch Introduction To Solid State Physics (New York: Wiley, 1971); Per. na russk. yaz., Kittel’ Ch Vvedenie v Fiziku Tverdogo Tela (M.: Nauka, 1978)
  28. Ashcroft N W, Mermin N D Solid State Physics (New York: Holt, Rinehart and Winston, 1976); Per. na russk. yaz., Ashkroft N, Mermin N Fizika Tverdogo Tela (M.: Mir, 1979)
  29. Damask A C, Dienes G J Point Defects In Metals (New York: Gordon and Breach, 1963); Per. na russk. yaz., Damask A, Dins Dzh Tochechnye Defekty v Metallakh (M.: Mir, 1966)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions