Issues

 / 

2021

 / 

October

  

Methodological notes


Why does statistical mechanics 'work' in condensed matter?

 
Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

The reasons behind the possibility of using the Gibbs distribution in condensed matter are considered. While the basics of statistical mechanics in gases are covered in great detail in many textbooks and reviews, the reasons for using the Gibbs distribution in crystals, glasses, and liquids are rarely considered. Most textbooks still only speak of a qualitative replacement of the mechanical description with a statistical one when considering a very large number of particles. At the same time, it turns out that the Gibbs distribution is not formally applicable to a harmonic crystal of a large number of particles. However, a system of even a small number of coupled anharmonic oscillators can demonstrate all the basic features of thermodynamically equilibrium crystals and liquids. It is the nonlinearity (anharmonism) of vibrations that leads to the mixing of phase trajectories and ergodicity of condensed matter. When the system goes into a state of thermodynamic equilibrium, there are 3 characteristic time scales: the time of thermalization of the system (in fact, the time of establishment of the local Gibbs distribution in momentum space and establishment of the local temperature); the time of establishment of a uniform temperature in the system after contact with the thermostat; and, finally, the time of establishment of ergodicity in the system (in fact, the time of 'sweeping' the entire phase space, including its coordinate part). The genesis of defect formation and diffusion in crystals and glasses, as well as their ergodicity, is discussed.

Fulltext pdf (512 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.03.038956
Keywords: Gibbs distribution, ergodicity, local instability, nonlinear oscillations, thermalization, diffusion
PACS: 05.20.−y, 05.45.−a, 05.90.+m, 63.20.K− (all)
DOI: 10.3367/UFNe.2021.03.038956
URL: https://ufn.ru/en/articles/2021/10/e/
000740826300004
2-s2.0-85123457395
Citation: Brazhkin V V "Why does statistical mechanics 'work' in condensed matter?" Phys. Usp. 64 1049–1057 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, August 2020, revised: 11th, March 2021, 29th, March 2021

Оригинал: Бражкин В В «Почему статистическая механика "работает" в конденсированных средах?» УФН 191 1107–1116 (2021); DOI: 10.3367/UFNr.2021.03.038956

References (29) Cited by (8) Similar articles (20) ↓

  1. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamicsPhys. Usp. 39 1045–1070 (1996)
  2. V.V. Brazhkin “Can glassforming liquids be 'simple'?Phys. Usp. 62 623–629 (2019)
  3. V.V. Brazhkin “Interparticle interaction in condensed media: some elements are ’more equal than others’Phys. Usp. 52 369–376 (2009)
  4. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  5. S.M. Stishov “Quantum effects in a system of Boltzmann hard spheresPhys. Usp. 62 617–622 (2019)
  6. M.Yu. Romanovsky “On R L Stratonovich's formula for transition from dynamic to probabilistic measurements and its connection with operations on distribution functions of random variablesPhys. Usp. 67 1056–1064 (2024)
  7. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  8. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  9. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  10. M.D. Bal’makov “Information capacity of condensed systemsPhys. Usp. 42 1167–1173 (1999)
  11. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  12. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  13. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  14. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  15. S.M. Stishov “On the thermodynamics of simple systemsPhys. Usp. 67 912–918 (2024)
  16. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  17. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  18. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherencePhys. Usp. 61 1016–1025 (2018)
  19. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  20. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions