Issues

 / 

2021

 / 

October

  

Physics of our days


Proton charge radius

  a,  a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

The so-called proton charge radius puzzle was one of the challenging problems in physics in the last decade. A significant (at the level of four standard deviations (4σ) difference between the values of the root-mean-square proton charge radius measured in normal and muonic hydrogen has kindled lively discussions among both experimentalists and theoreticians specializing in quantum electrodynamics. The problem becomes even more glaring (up to 7σ) if data on the scattering of electrons on protons are taken into account. We review various methods that enable measurement of the proton charge radius, analyze the origin of the disagreement, and present results of recent experiments that aim at resolving this puzzle.

Fulltext pdf (635 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.06.038986
Keywords: proton radius, hydrogen atom, muonic hydrogen, proton radius puzzle, Rydberg constant, single-photon spectroscopy, e-p scattering
PACS: 06.20.Jr, 06.30.Ft, 12.20.Fv, 32.10.Fn, 32.30.Jc, 42.62.Fi (all)
DOI: 10.3367/UFNe.2021.06.038986
URL: https://ufn.ru/en/articles/2021/10/d/
000740826300010
2-s2.0-85123456182
Citation: Khabarova K Yu, Kolachevsky N N "Proton charge radius" Phys. Usp. 64 1038–1048 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, February 2021, revised: 4th, June 2021, 6th, June 2021

Оригинал: Хабарова К Ю, Колачевский Н Н «Зарядовый радиус протона» УФН 191 1095–1106 (2021); DOI: 10.3367/UFNr.2021.06.038986

References (96) Cited by (8) Similar articles (12) ↓

  1. S.G. Karshenboim “Progress in the accuracy of the fundamental physical constants: 2010 CODATA recommended valuesPhys. Usp. 56 883–909 (2013)
  2. P.G. Kryukov “Femtosecond lasers for astrophysicsPhys. Usp. 58 762–771 (2015)
  3. V.I. Zhukova, A.V. Nefediev et alSuper-factory of bottomed hadrons Belle IIPhys. Usp. 64 468–494 (2021)
  4. A.K. Fedorov, E.O. Kiktenko et alQuantum entanglement, teleportation, and randomness: Nobel Prize in Physics 2022Phys. Usp. 66 1095–1104 (2023)
  5. S.G. Karshenboim “Fundamental physical constants: their role in physics and metrology and recommended valuesPhys. Usp. 48 255–280 (2005)
  6. I.M. Dremin “The interaction region of high energy protonsPhys. Usp. 58 61–70 (2015)
  7. D.Yu. Akimov, V.A. Belov et alCoherent elastic neutrino-atomic nucleus scattering — recently discovered type of low-energy neutrino interactionPhys. Usp. 62 166–178 (2019)
  8. L.B. Okun “The fundamental constants of physicsSov. Phys. Usp. 34 (9) 818–826 (1991)
  9. V.S. Letokhov “Laser light, atoms, and nucleiSov. Phys. Usp. 30 897–909 (1987)
  10. I.L. Rozental’ “Physical laws and the numerical values of fundamental constantsSov. Phys. Usp. 23 296–305 (1980)
  11. U. Amaldi “How protons are seen by high energy hadronsSov. Phys. Usp. 21 328–344 (1978)
  12. H. Walther “One-atom maser and other experiments on cavity quantum electrodynamicsPhys. Usp. 39 727–743 (1996)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions