Issues

 / 

2021

 / 

October

  

Physics of our days


Proton charge radius

  a,  a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), ul. Novaya 100, Skolkovo, Moscow Region, 143025, Russian Federation

The so-called proton charge radius puzzle was one of the challenging problems in physics in the last decade. A significant (at the level of four standard deviations (4σ) difference between the values of the root-mean-square proton charge radius measured in normal and muonic hydrogen has kindled lively discussions among both experimentalists and theoreticians specializing in quantum electrodynamics. The problem becomes even more glaring (up to 7σ) if data on the scattering of electrons on protons are taken into account. We review various methods that enable measurement of the proton charge radius, analyze the origin of the disagreement, and present results of recent experiments that aim at resolving this puzzle.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: proton radius, hydrogen atom, muonic hydrogen, proton radius puzzle, Rydberg constant, single-photon spectroscopy, e-p scattering
PACS: 06.20.Jr, 06.30.Ft, 12.20.Fv, 32.10.Fn, 32.30.Jc, 42.62.Fi (all)
DOI: 10.3367/UFNe.2021.06.038986
URL: https://ufn.ru/en/articles/2021/10/d/
Citation: Khabarova K Yu, Kolachevsky N N "Proton charge radius" Phys. Usp. 64 1038–1048 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, February 2021, revised: 4th, June 2021, 6th, June 2021

Оригинал: Хабарова К Ю, Колачевский Н Н «Зарядовый радиус протона» УФН 191 1095–1106 (2021); DOI: 10.3367/UFNr.2021.06.038986

References (96) ↓ Similar articles (10)

  1. Karshenboim S G Usp. Fiz. Nauk 183 935 (2013); Karshenboim S G Phys. Usp. 56 883 (2013)
  2. Biraben F Eur. Phys. J. Spec. Top. 172 109 (2009)
  3. Antognini A et al Science 339 417 (2013)
  4. Hofstadter R, Bumiller F, Yearian M R Rev. Mod. Phys. 30 482 (1958)
  5. Hofstadter R Annu. Rev. Nucl. Sci. 7 231 (1957)
  6. Hofstadter R, McAllister R W Phys. Rev. 98 217 (1955)
  7. McAllister R W, Hofstadter R Phys. Rev. 102 851 (1956)
  8. Yennie D R, Lévy M M, Ravenhall D G Rev. Mod. Phys. 29 144 (1957)
  9. Rosenbluth M N Phys. Rev. 79 615 (1950)
  10. Walecka J D Nuovo Cimento 11 821 (1959)
  11. Ernst F J, Sachs R G, Wali K C Phys. Rev. 119 1105 (1960)
  12. Bernauer J C et al (A1 Collab.) Phys. Rev. C 90 015206 (2014)
  13. Barcus S K, Higinbotham D W, McClellan R E Phys. Rev. C 102 015205 (2020)
  14. Punjabi V et al Eur. Phys. J. A 51 79 (2015)
  15. Higinbotham D W et al Phys. Rev. C 93 055207 (2016)
  16. Lehmann P, Taylor R, Wilson R Phys. Rev. 126 1183 (1962)
  17. Hand L N, Miller D G, Wilson R Rev. Mod. Phys. 35 335 (1963)
  18. Murphy J J (II), Shin Y M, Skopik D M Phys. Rev. C 9 2125 (1974)
  19. Borkowski F et al Nucl. Phys. B 93 461 (1975)
  20. Simon G G et al Nucl. Phys. A 333 381 (1980)
  21. Bernauer J et al (A1 Collab.) Phys. Rev. Lett. 105 242001 (2010)
  22. Zhan X et al Phys. Lett. B 705 59 (2011)
  23. Sick I Phys. Lett. B 576 62 (2003)
  24. Sick I, Trautmann D Phys. Rev. C 89 012201 (2014)
  25. Hill R J, Paz G Phys. Rev. D 82 113005 (2010)
  26. Lorenz I T, Hammer H-W, Meißner U-G Eur. Phys. J. A 48 151 (2012)
  27. Lorenz I T, Meißner U-G Phys. Lett. B 737 57 (2014)
  28. Mohr P J, Newell D B, Taylor B N Rev. Mod. Phys. 88 035009 (2016)
  29. Parker R H et al Science 360 191 (2018)
  30. Heiße F et al Phys. Rev. Lett. 119 033001 (2017)
  31. Eides M I, Grotch H, Shelyuto V A Phys. Rep. 342 63 (2001)
  32. Pohl R et al Hyperfine Interactions 127 161 (2000)
  33. Meyer V et al Phys. Rev. Lett. 84 1136 (2000)
  34. Horbatsch M, Hessels E A Phys. Rev. A 93 022513 (2016)
  35. Lundeen S R, Pipkin F M Phys. Rev. Lett. 46 232 (1981)
  36. Hagley E W, Pipkin F M Phys. Rev. Lett. 72 1172 (1994)
  37. van Wijngaarden A, Holuj F, Drake G W Can. J. Phys. 76 95 (1998)
  38. de Beavoir B et al Eur. Phys. J. D 12 61 (2000)
  39. Pohl R et al Nature 466 213 (2010)
  40. Antognini A et al AIP Conf. Proc. 796 253 (2005)
  41. Pohl R et.al. Hyp. Interact. 193 115 (2009)
  42. Antognini A et al IEEE J. Quantum Electron. 45 993 (2009)
  43. Giesen A et al Appl. Phys. B 58 365 (1994)
  44. Mohr P J, Taylor B N, Newell D B Rev. Mod. Phys. 80 633 (2008)
  45. Toth R A J. Mol. Spectrosc. 190 379 (1998)
  46. Blunden P G, Sick I Phys. Rev. C 72 057601 (2005)
  47. Jentschura U D Ann. Physics 326 516 (2011)
  48. Karr J-P, Hilico L Phys. Rev. Lett. 109 103401 (2012)
  49. Umair M, Jonsell S J. Phys. B 47 175003 (2014)
  50. De Rújula A Phys. Lett. B 693 555 (2010)
  51. Cloët I C, Miller G A Phys. Rev. C 83 012201 (2011)
  52. Miller G A et al Phys. Rev. A 84 020101 (2011)
  53. Hill R J, Paz G Phys. Rev. Lett. 107 160402 (2011)
  54. Miller G A Phys. Lett. B 718 1078 (2013)
  55. Miller G A, Thomas A W, Carroll J D Phys. Rev. C 86 065201 (2012)
  56. Birse M C, McGovern J A Eur. Phys. J. A 48 120 (2012)
  57. Jentschura U D Phys. Rev. A 88 062514 (2013)
  58. Bennet G W et al (Muon g-2 Collab.) Phys. Rev. D 73 072003 (2006)
  59. Hagiwara K et al J. Phys. G 38 085003 (2011)
  60. Abi B et al (Muon g-2 Collab.) Phys. Rev. Lett. 126 141801 (2021)
  61. Aoyama T et al Phys. Rep. 887 1 (2020)
  62. Karshenboim S G, McKeen D, Pospelov M Phys. Rev. D 90 073004 (2014)
  63. Onofrio R Mod. Phys. Lett. A 28 1350022 (2013)
  64. Onofrio R Europhys. Lett. 104 20002 (2013)
  65. Wang L-B, Ni W-T Mod. Phys. Lett. A 28 1350094 (2013)
  66. Sick I Few-Body Syst. 50 903 (2014)
  67. Ron G et al (The Jefferson Lab Hall A Collab.) Phys. Rev. C 84 055204 (2011)
  68. Lee G, Arrington J R, Hill R J Phys. Rev. D 92 013013 (2015)
  69. Belushkin M A, Hammer H-W, Meißner U-G Phys. Rev. C 75 035202 (2007)
  70. Adamuscin C, Dubnicka S, Dubnickova A Z Prog. Part. Nucl. Phys. 67 479 (2012)
  71. Lorenz I T et al Phys. Rev. D 91 014023 (2015)
  72. Bauer T, Bernauer J C, Scherer S Phys. Rev. C 86 065206 (2012)
  73. Kraus E et al Phys. Rev. C 90 045206 (2014)
  74. Pohl R et al Science 353 669 (2016)
  75. Pachucki K Phys. Rev. Lett. 106 193007 (2011)
  76. Griffioen K, Carlson C, Maddox S Phys. Rev. C 93 065207 (2016)
  77. Parthey C G et al Phys. Rev. Lett. 104 233001 (2010)
  78. Jentschura U D et al Phys. Rev. A 83 042505 (2011)
  79. Krauth J J et al Ann. Physics 366 168 (2016)
  80. Mohr P J, Taylor B N, Newell D B Rev. Mod. Phys. 84 1527 (2012)
  81. Pohl R et al Metrologia 54 (2) L1 (2017)
  82. Parthey C G et al Phys. Rev. Lett. 107 203001 (2011)
  83. Alnis J et al Phys. Rev. A 77 053809 (2008)
  84. Kolachevskii N N, Khabarova K Yu Usp. Fiz. Nauk 184 1354 (2014); Kolachevsky N N, Khabarova K Yu Phys. Usp. 57 1230 (2014)
  85. Kolachevskii N N Usp. Fiz. Nauk 174 1171 (2004); Kolachevsky N N Phys. Usp. 47 1101 (2004)
  86. Beyer A et al Ann. Physik 525 671 (2013)
  87. Udem Th, Holzwarth R, Hänsch T W Nature 416 233 (2002)
  88. Beyer A et al Science 358 79 (2017)
  89. Udem Th et al Ann. Physik 531 1900044 (2019)
  90. Vutha A C, Hessels E A Phys. Rev. A 92 052504 (2015)
  91. Bezginov N et al Science 365 1007 (2019)
  92. Fleurbaey H et al Phys. Rev. Lett. 120 183001 (2018)
  93. Grinin A et al Science 370 1061 (2020)
  94. Baklanov E V, Chebotaev V P Kvantovaya Elektronika 4 2189 (1977); Baklanov E V, Chebotaev V P Sov. J. Quantum Electron. 7 1252 (1977)
  95. National Institute of Standards and Technology U.S. Department Commerce. The Physical Measurement Laboratory (PML), https://physics.nist.gov/
  96. Karr J-P, Marchand D, Voutier E Nat. Rev. Phys. 2 601 (2020)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions