Issues

 / 

2019

 / 

February

  

Methodological notes


Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions


M.V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russian Federation

The orbital binding energies, obtained in the experiments or in the quantum-mechanical calculations, are studied in the ground state of many-electron elements. Their dependences on the atomic number and on the degree of ionization are analyzed. The semiclassical quantization condition of Bohr—Sommerfield is used and a filled shell orbital binding energy scaling is shown approximately. The scaling is similar to one in the Thomas—Fermi model, but with other two coefficient functions. The effective method of the demonstration of binding energies in a large number of atoms through these two functions is proposed. In addition the special features of the elements of main and intermediate groups and the influence of relativistic effects are visually manifested. The simple interpolation expressions are built for the two functions. One can use them to estimate orbital binding energies in the filled shells of many-electron atoms and ions to within 10% for the average elements and from 10% to 30% for the heavy ones. The estimation can be used as the initial approximation in precessional atomic computations and also for the rough calculations of the ionization cross sections of many-electron atoms and ions by electrons and heavy particles failing more precise data.

Fulltext pdf (322 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.02.038289
Keywords: periodic system, semiclassic approximation, electron-binding energy, atomic number scaling, ionization state, orbital angular momentum
PACS: 03.65.−w, 31.10.+z, 31.15.bt (all)
DOI: 10.3367/UFNe.2018.02.038289
URL: https://ufn.ru/en/articles/2019/2/e/
000466030200005
2-s2.0-85067789561
2019PhyU...62..186S
Citation: Shpatakovskaya G V "Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions" Phys. Usp. 62 186–197 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, October 2017, revised: 20th, January 2018, 9th, February 2018

Оригинал: Шпатаковская Г В «Квазиклассический метод анализа и оценки орбитальных энергий связи в многоэлектронных атомах и ионах» УФН 189 195–206 (2019); DOI: 10.3367/UFNr.2018.02.038289

References (26) ↓ Cited by (10) Similar articles (20)

  1. Landau L D, Lifshits E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (M.: Fizmatlit, 1989); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  2. Kirzhnits D A, Lozovik Yu E, Shpatakovskaya G V Usp. Fiz. Nauk 117 3 (1975); Kirzhnits D A, Lozovik Yu E, Shpatakovskaya G V Sov. Phys. Usp. 18 649 (1975)
  3. Shpatakovskaya G V Usp. Fiz. Nauk 182 457 (2012); Shpatakovskaya G V Phys. Usp. 55 429 (2012)
  4. Dyachkov S A, Levashov P R Phys. Plasmas 21 052702 (2014)
  5. Gombás P Die Statistische Theorie Des Atoms Und Ihre Anwendungen (Wein: Springer-Verlag, 1949); Per. na russk. yaz., Gombash P Statisticheskaya Teoriya Atoma i Ee Primeneniya (M.: IL, 1951)
  6. Shevelko V P, Vinogradov A V Phys. Scripta 19 275 (1979)
  7. Vinogradov A V, Tolstikhin O I Zh. Eksp. Teor. Fiz. 96 1204 (1989); Vinogradov A V, Tolstikhin O I Sov. Phys. JETP 69 683 (1989)
  8. Sigmund P Particle Penetration And Radiation Effects (Springer Series in Solid-State Sciences, Vol. 179) Vol. 2 (Berlin: Springer, 2014)
  9. Desclaux J P Comput. Phys. Commun. 9 31 (1975)
  10. Rashid Kh, Saadi M Z, Yasin M Atom. Data. Nucl. Data Tabl. 40 365 (1988)
  11. Kotochigova S et al Phys. Rev. A 55 191 (1997)
  12. Nikiforov A F, Novikov V G, Uvarov V B Kvantovo-statisticheskie Modeli Vysokotemperaturnoi Plazmy (M.: Fizmatlit, 2000); Per. na angl. yaz., Nikiforov A F, Novikov V G, Uvarov V B Quantum-Statistical Models Of Hot Dense Matter ((Basel: Birkhäuser Verlag, 2005)
  13. Giannozzi P et al J. Phys. Condens. Matter 21 395502 (2009)
  14. Kozlov M G et al Comput. Phys. Commun. 195 199 (2015)
  15. Shpatakovskaya G V, Karpov V Ya J. Phys. Conf. Ser. 774 012002 (2016)
  16. Karpov V Ya, Shpatakovskaya G V Zh. Eksp. Teor. Fiz. 151 435 (2017); Karpov V Ya, Shpatakovskaya G V JETP 124 369 (2017)
  17. Shpatakovskaya G V Preprint No. 184 (Moscow: Keldysh Institute of Applied Mathematics, 2018)
  18. X-Ray Data Booklet, Center for X-ray Optics and Advanced Light Source. Lawrence Berkeley National Laboratory, Update October 2009, http://xdb.lbl.gov/
  19. Moore C E NBS Circular 467 Vol. 1 (Washington, DC: Department of Commerce, 1949); Moore C E NBS Circular 467 Vol. 2 (Washington, DC: Department of Commerce, 1952); Moore C E NBS Circular 467 Vol. 3 (Washington, DC: Department of Commerce, 1958)
  20. Bearden J A, Burr A F Rev. Mod. Phys. 39 125 (1967)
  21. Cardona M, Ley L (Eds) Photoemission In Solids Vol. 1 General Principles (Berlin: Shpringer-Verlag, 1978)
  22. Fuggle J C, Mårtensson N J. Electron Spectrosc. Relat. Phenom. 21 275 (1980)
  23. Atomic Reference Data for Electronic Structure Calculations. NIST Standard Reference Database 141, http://www.nist.gov/pml/data/dftdata/index.cfm
  24. The DREEBIT Ionization Energy Database, http://www.dreebit-ibt.com/ionization-energy-database.html
  25. Shpatakovskaya G V Pis’ma ZhETF 73 306 (2001); Shpatakovskaya G V JETP Lett. 73 268 (2001)
  26. Shpatakovskaya G V Pis’ma ZhETF 108 781 (2018); Shpatakovskaya G V JETP Lett. 108 768 (2018)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions