Issues

 / 

2019

 / 

February

  

Methodological notes


Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions


M.V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russian Federation

The orbital binding energies, obtained in the experiments or in the quantum-mechanical calculations, are studied in the ground state of many-electron elements. Their dependences on the atomic number and on the degree of ionization are analyzed. The semiclassical quantization condition of Bohr—Sommerfield is used and a filled shell orbital binding energy scaling is shown approximately. The scaling is similar to one in the Thomas—Fermi model, but with other two coefficient functions. The effective method of the demonstration of binding energies in a large number of atoms through these two functions is proposed. In addition the special features of the elements of main and intermediate groups and the influence of relativistic effects are visually manifested. The simple interpolation expressions are built for the two functions. One can use them to estimate orbital binding energies in the filled shells of many-electron atoms and ions to within 10% for the average elements and from 10% to 30% for the heavy ones. The estimation can be used as the initial approximation in precessional atomic computations and also for the rough calculations of the ionization cross sections of many-electron atoms and ions by electrons and heavy particles failing more precise data.

Fulltext pdf (322 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.02.038289
Keywords: periodic system, semiclassic approximation, electron-binding energy, atomic number scaling, ionization state, orbital angular momentum
PACS: 03.65.−w, 31.10.+z, 31.15.bt (all)
DOI: 10.3367/UFNe.2018.02.038289
URL: https://ufn.ru/en/articles/2019/2/e/
000466030200005
2-s2.0-85067789561
2019PhyU...62..186S
Citation: Shpatakovskaya G V "Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions" Phys. Usp. 62 186–197 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, October 2017, revised: 20th, January 2018, 9th, February 2018

Оригинал: Шпатаковская Г В «Квазиклассический метод анализа и оценки орбитальных энергий связи в многоэлектронных атомах и ионах» УФН 189 195–206 (2019); DOI: 10.3367/UFNr.2018.02.038289

References (26) Cited by (10) Similar articles (20) ↓

  1. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  2. S.E. Kuratov, D.S. Shidlovski et alTwo scales of quantum effects in a mesoscopic system of degenerate electronsPhys. Usp. 64 836–851 (2021)
  3. E.D. Trifonov “On the spin-statistics theoremPhys. Usp. 60 621–622 (2017)
  4. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elementsPhys. Usp. 36 (9) 851–853 (1993)
  5. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theoryPhys. Usp. 63 407–411 (2020)
  6. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particlePhys. Usp. 57 891–896 (2014)
  7. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  8. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)
  9. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  10. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)Phys. Usp. 63 721–724 (2020)
  11. I.F. Ginzburg “Particles in finite and infinite one-dimensional chainsPhys. Usp. 63 395–406 (2020)
  12. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  13. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  14. V.K. Ignatovich “The neutron Berry phasePhys. Usp. 56 603–604 (2013)
  15. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  16. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  17. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  18. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)
  19. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanicsSov. Phys. Usp. 33 (1) 86–86 (1990)
  20. K.S. Vul’fson “Angular momentum of electromagnetic wavesSov. Phys. Usp. 30 724–728 (1987)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions