Issues

 / 

2018

 / 

November

  

Conferences and symposia


Understanding surface states of topological insulators

Topological electron states were theoretically predicted by B.A. Volkov and O.A. Pankratov in 1985 as interface states in an inverted contact between IV—VI semiconductors with their bands mutually inverted. As became clear later, the `inverted' SnTe semiconductor is a topological insulator, and the inverted contact is an example of a topologically nontrivial interface. This paper discusses the key results of Volkov and Pankratov's 1985 work and examines the usefulness of the inverted contact model for explaining the close link between the topologically nontrivial bulk band structure and the topological surface states. An advantage of the model for getting a deeper insight into this link is that it allows for an analytical solution. An inhomogeneous semiconductor structure is described by an effective Dirac Hamiltonian, which was obtained analytically from a tight binding model for the band structure of IV—VI materials. This allows one to trace the relation between topological surface states and bands in the bulk. As a result, the spin texture of a topological state can be expressed explicitly in terms of the bulk characteristics. It turns out that the spin texture can be controlled by varying the surface band bending. Given the nontrivial spin polarization at the surface, it is interesting to take a look at the Ruderman—Kittel—Kasuya—Yosida. (RKKY) interaction between magnetic adatoms, which can serve for probing the spin distribution locally. This interaction shows a much more complex structure than the common RKKY coupling in a non-polarized Fermi gas. The analytical theory provides an explicit relation between the RKKY interaction at the surface of a topological insulator and the parameters of the bulk spectrum.

Fulltext pdf (2.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038307
Keywords: topological insulators, topological surface states, inverted contact, spin texture
PACS: 73.20.−r, 73.40.Lq, 73.43.Cd (all)
DOI: 10.3367/UFNe.2017.12.038307
URL: https://ufn.ru/en/articles/2018/11/j/
000457154900010
2-s2.0-85062295444
2018PhyU...61.1116P
Citation: Pankratov O A "Understanding surface states of topological insulators" Phys. Usp. 61 1116–1126 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, January 2018, 13th, December 2017

Оригинал: Панкратов О А «Поверхностные состояния топологических изоляторов» УФН 188 1226–1237 (2018); DOI: 10.3367/UFNr.2017.12.038307

References (24) Cited by (10) Similar articles (20) ↓

  1. S.A. Tarasenko “Electron properties of topological insulators. The structure of edge states and photogalvanic effects61 1026–1030 (2018)
  2. Yu.E. Lozovik “Plasmonics and magnetoplasmonics based on graphene and a topological insulator55 1035–1039 (2012)
  3. B.A. Volkov, O.A. Pankratov “Inverted contact in semiconductors—a new inhomogeneous structure with a twodimensional gas of zero-mass electrons29 579–581 (1986)
  4. A.N. Aleshin “Organic optoelectronics based on polymer—inorganic nanoparticle composite materials56 627–632 (2013)
  5. Modern problems in physical sciences (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 October 2011)55 408–425 (2012)
  6. S.V. Morozov “New effects in graphene with high carrier mobility55 408–412 (2012)
  7. S.M. Stishov, L.G. Khvostantsev et alOn the 50th anniversary of the L F Vereshchagin Institute for High Pressure Physics, RAS (Scientific outreach session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2008)51 1055–1083 (2008)
  8. B.A. Volkov “Electronic properties of narrow gap IV-VI semiconductors46 984–986 (2003)
  9. L.I. Magarill, D.A. Romanov, A.V. Chaplik “Low-dimensional electrons in curvilinear nanostructures43 283–285 (2000)
  10. V.F. Elesin, I.Yu. Kateev et alTheory of coherent oscillations in a resonant tunneling diode43 291–293 (2000)
  11. I.V. Kukushkin, V.B. Timofeev “Magnetooptics of two-dimensional electrons in the ultraquantum limit34 (3) 269–272 (1991)
  12. V.M. Pudalov, S.G. Semenchinskii, V.S. Edel’man “Charge and potential of an inversion layer in a metalinsulator-semiconductor structure in a quantizing magnetic field28 635–636 (1985)
  13. G.E. Volovik “Superfluids in rotation: Landau—Lifshitz vortex sheets vs Onsager—Feynman vortices58 897–905 (2015)
  14. D.A. Kirzhnits “Pulsars and rotation of a superfluid liquid38 791–792 (1995)
  15. K.A. Valiev “Present-day Semiconductor Microelectronics and the Prospects of its Development16 281–283 (1973)
  16. Topological states: what are they and what are they for? Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 November 201761 1026–1026 (2018)
  17. B.A. Volkov, O.A. Pankratov “Electronic structure of quasicubic crystals: energy bands, dielectric properties, and defects in narrow-gap semiconductors.29 575–577 (1986)
  18. A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev “Ultrafast optomagnetism58 969–980 (2015)
  19. V.V. Nesvizhevskii “Quantum states of neutrons in a gravitational field and the interaction of neutrons with nanoparticles46 93–97 (2003)
  20. G.E. Volovik “Exotic Lifshitz transitions in topological materials61 89–98 (2018)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions