Issues

 / 

2018

 / 

November

  

Conferences and symposia


Understanding surface states of topological insulators

Topological electron states were theoretically predicted by B.A. Volkov and O.A. Pankratov in 1985 as interface states in an inverted contact between IV—VI semiconductors with their bands mutually inverted. As became clear later, the `inverted' SnTe semiconductor is a topological insulator, and the inverted contact is an example of a topologically nontrivial interface. This paper discusses the key results of Volkov and Pankratov's 1985 work and examines the usefulness of the inverted contact model for explaining the close link between the topologically nontrivial bulk band structure and the topological surface states. An advantage of the model for getting a deeper insight into this link is that it allows for an analytical solution. An inhomogeneous semiconductor structure is described by an effective Dirac Hamiltonian, which was obtained analytically from a tight binding model for the band structure of IV—VI materials. This allows one to trace the relation between topological surface states and bands in the bulk. As a result, the spin texture of a topological state can be expressed explicitly in terms of the bulk characteristics. It turns out that the spin texture can be controlled by varying the surface band bending. Given the nontrivial spin polarization at the surface, it is interesting to take a look at the Ruderman—Kittel—Kasuya—Yosida. (RKKY) interaction between magnetic adatoms, which can serve for probing the spin distribution locally. This interaction shows a much more complex structure than the common RKKY coupling in a non-polarized Fermi gas. The analytical theory provides an explicit relation between the RKKY interaction at the surface of a topological insulator and the parameters of the bulk spectrum.

Fulltext pdf (2.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038307
Keywords: topological insulators, topological surface states, inverted contact, spin texture
PACS: 73.20.−r, 73.40.Lq, 73.43.Cd (all)
DOI: 10.3367/UFNe.2017.12.038307
URL: https://ufn.ru/en/articles/2018/11/j/
000457154900010
2-s2.0-85062295444
2018PhyU...61.1116P
Citation: Pankratov O A "Understanding surface states of topological insulators" Phys. Usp. 61 1116–1126 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, January 2018, 13th, December 2017

Оригинал: Панкратов О А «Поверхностные состояния топологических изоляторов» УФН 188 1226–1237 (2018); DOI: 10.3367/UFNr.2017.12.038307

References (24) Cited by (13) Similar articles (20) ↓

  1. S.A. Tarasenko “Electron properties of topological insulators. The structure of edge states and photogalvanic effectsPhys. Usp. 61 1026–1030 (2018)
  2. Yu.E. Lozovik “Plasmonics and magnetoplasmonics based on graphene and a topological insulatorPhys. Usp. 55 1035–1039 (2012)
  3. B.A. Volkov, O.A. Pankratov “Inverted contact in semiconductors—a new inhomogeneous structure with a twodimensional gas of zero-mass electronsSov. Phys. Usp. 29 579–581 (1986)
  4. A.N. Aleshin “Organic optoelectronics based on polymer—inorganic nanoparticle composite materialsPhys. Usp. 56 627–632 (2013)
  5. Modern problems in physical sciences (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 October 2011)Phys. Usp. 55 408–425 (2012)
  6. S.V. Morozov “New effects in graphene with high carrier mobilityPhys. Usp. 55 408–412 (2012)
  7. S.M. Stishov, L.G. Khvostantsev et alOn the 50th anniversary of the L F Vereshchagin Institute for High Pressure Physics, RAS (Scientific outreach session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2008)Phys. Usp. 51 1055–1083 (2008)
  8. B.A. Volkov “Electronic properties of narrow gap IV-VI semiconductorsPhys. Usp. 46 984–986 (2003)
  9. L.I. Magarill, D.A. Romanov, A.V. Chaplik “Low-dimensional electrons in curvilinear nanostructuresPhys. Usp. 43 283–285 (2000)
  10. V.F. Elesin, I.Yu. Kateev et alTheory of coherent oscillations in a resonant tunneling diodePhys. Usp. 43 291–293 (2000)
  11. I.V. Kukushkin, V.B. Timofeev “Magnetooptics of two-dimensional electrons in the ultraquantum limitSov. Phys. Usp. 34 (3) 269–272 (1991)
  12. V.M. Pudalov, S.G. Semenchinskii, V.S. Edel’man “Charge and potential of an inversion layer in a metalinsulator-semiconductor structure in a quantizing magnetic fieldSov. Phys. Usp. 28 635–636 (1985)
  13. G.E. Volovik “Superfluids in rotation: Landau—Lifshitz vortex sheets vs Onsager—Feynman vorticesPhys. Usp. 58 897–905 (2015)
  14. D.A. Kirzhnits “Pulsars and rotation of a superfluid liquidPhys. Usp. 38 791–792 (1995)
  15. K.A. Valiev “Present-day Semiconductor Microelectronics and the Prospects of its DevelopmentSov. Phys. Usp. 16 281–283 (1973)
  16. Topological states: what are they and what are they for? Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 November 2017Phys. Usp. 61 1026–1026 (2018)
  17. B.A. Volkov, O.A. Pankratov “Electronic structure of quasicubic crystals: energy bands, dielectric properties, and defects in narrow-gap semiconductors.Sov. Phys. Usp. 29 575–577 (1986)
  18. A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev “Ultrafast optomagnetismPhys. Usp. 58 969–980 (2015)
  19. V.V. Nesvizhevskii “Quantum states of neutrons in a gravitational field and the interaction of neutrons with nanoparticlesPhys. Usp. 46 93–97 (2003)
  20. G.E. Volovik “Exotic Lifshitz transitions in topological materialsPhys. Usp. 61 89–98 (2018)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions