Issues

 / 

2018

 / 

November

  

Methodological notes


Can we refer to Hamilton equations for an oscillator with friction?

 a, b
a Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b Lobachevsky State University of Nizhny Novgorod (National Research University), prosp. Gagarina 23, Nizhny Novgorod, 603950, Russian Federation

A formal possibility of describing a one-dimensional dissipative problem ẍ = f/(x, ẋ) with completely conservative Lagrange or Hamilton equations is discussed. A reference case of a harmonic oscillator with a linear friction is considered in detail.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038273
Keywords: classical mechanics, Lagrange equations, Hamilton equations, energy integral, conservative and dissipative systems
PACS: 45.05.+x, 45.20.−d (all)
DOI: 10.3367/UFNe.2017.12.038273
URL: https://ufn.ru/en/articles/2018/11/e/
000457154900005
2-s2.0-85062259593
2018PhyU...61.1082S
Citation: Shalashov A G "Can we refer to Hamilton equations for an oscillator with friction?" Phys. Usp. 61 1082–1088 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, September 2017, revised: 21st, December 2017, 26th, December 2017

Оригинал: Шалашов А Г «Можно ли говорить об уравнениях Гамильтона для осциллятора с трением?» УФН 188 1191–1197 (2018); DOI: 10.3367/UFNr.2017.12.038273

References (34) Cited by (5) Similar articles (20) ↓

  1. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  2. E.A. Vinogradov “Optical phonons with a negative oscillator strengthPhys. Usp. 63 775–781 (2020)
  3. B.Ya. Zel’dovich, M.J. Soileau “Bi-frequency pendulum on a rotary platform: modeling various optical phenomenaPhys. Usp. 47 1239–1255 (2004)
  4. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic mediaPhys. Usp. 55 147–160 (2012)
  5. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  6. A.A. Shatskiy, I.D. Novikov, N.S. Kardashev “The Kepler problem and collisions of negative massesPhys. Usp. 54 381–385 (2011)
  7. A.G. Shalashov, E.D. Gospodchikov “'Anomalous' dissipation of a paraxial wave beam propagating along an absorbing planePhys. Usp. 65 1303–1312 (2022)
  8. N.N. Rosanov, R.M. Arkhipov, M.V. Arkhipov “On laws of conservation in electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute)Phys. Usp. 61 1227–1233 (2018)
  9. B.Ya. Zel’dovich “Impedance and parametric excitation of oscillatorsPhys. Usp. 51 465–484 (2008)
  10. A.V. Kukushkin “An invariant formulation of the potential integration method for the vortical equation of motion of a material pointPhys. Usp. 45 1153–1164 (2002)
  11. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic mediaPhys. Usp. 54 145–165 (2011)
  12. P. Paradoksov “How quantum mechanics helps us understand classical mechanicsSov. Phys. Usp. 9 618–620 (1967)
  13. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  14. M.V. Kuzelev, A.A. Rukhadze “On the quantum description of the linear kinetics of a collisionless plasmaPhys. Usp. 42 603–605 (1999)
  15. E.D. Trifonov “On quantum statistics for ensembles with a finite number of particlesPhys. Usp. 54 723–727 (2011)
  16. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillationsPhys. Usp. 46 293–307 (2003)
  17. P.S. Kondratenko, L.V. Matveev “Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalismPhys. Usp., accepted
  18. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equationsPhys. Usp. 59 669–688 (2016)
  19. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  20. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions