Issues

 / 

2018

 / 

November

  

Methodological notes


Can we refer to Hamilton equations for an oscillator with friction?

 a, b
a Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b Lobachevsky State University of Nizhny Novgorod (National Research University), prosp. Gagarina 23, Nizhny Novgorod, 603950, Russian Federation

A formal possibility of describing a one-dimensional dissipative problem ẍ = f/(x, ẋ) with completely conservative Lagrange or Hamilton equations is discussed. A reference case of a harmonic oscillator with a linear friction is considered in detail.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038273
Keywords: classical mechanics, Lagrange equations, Hamilton equations, energy integral, conservative and dissipative systems
PACS: 45.05.+x, 45.20.−d (all)
DOI: 10.3367/UFNe.2017.12.038273
URL: https://ufn.ru/en/articles/2018/11/e/
000457154900005
2-s2.0-85062259593
2018PhyU...61.1082S
Citation: Shalashov A G "Can we refer to Hamilton equations for an oscillator with friction?" Phys. Usp. 61 1082–1088 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, September 2017, revised: 21st, December 2017, 26th, December 2017

Оригинал: Шалашов А Г «Можно ли говорить об уравнениях Гамильтона для осциллятора с трением?» УФН 188 1191–1197 (2018); DOI: 10.3367/UFNr.2017.12.038273

References (34) ↓ Cited by (5) Similar articles (20)

  1. Landau L D, Lifshits E M Mekhanika (M.: Nauka, 1987); Landau L D, Lifshits E M Mekhanika 4-e izd. (M.: Fizmatlit, 1995); Per. na angl. yaz., Landau L D, Lifshitz E M Mechanics (Oxford: Pergamon Press, 1976)
  2. Gantmakher F R Lektsii Po Analiticheskoi Mekhanike (M.: Nauka, 1966); Gantmakher F R Lektsii Po Analiticheskoi Mekhanike 3-e izd. (M.: Fizmatlit, 2001); Per. na angl. yaz., Gantmacher F Lectures In Analytical Mechanics (Moscow: Mir Publ., 1970)
  3. Goldstein H, Poole C, Safko J Classical Mechanics 3rd ed. (San Francisco: Addison Wesley, 2002); Per. na russk. yaz., Goldstein G, Pul Ch, Safko Dzh Klassicheskaya Mekhanika (Izhevsk: RKhD, 2012)
  4. Ol’khovskii I I Kurs Teoreticheskoi Mekhaniki dlya Fizikov (M.: Izd-vo MGU, 1974); Ol’khovskii I I Kurs Teoreticheskoi Mekhaniki dlya Fizikov 4-e izd. (SPb: Lan’, 2009)
  5. Aizerman M A Klassicheskaya Mekhanika (M.: Nauka, 1980); Aizerman M A Klassicheskaya Mekhanika (M.: Nauka, 2005)
  6. Helmholtz H J. Reine Angew. Math. 100 137 (1887)
  7. Havas P Nuovo Cimento 5 (Suppl. 3) 363 (1957)
  8. Douglas J Trans. Am. Math. Soc. 50 71 (1941)
  9. Razavy M Classical And Quantum Dissipative Systems (London: Imperial College Press, 2005)
  10. Dekker H Phys. Rep. 80 1 (1981)
  11. McDonald K T "A damped oscillator as a Hamiltonian system" http://physics.princeton.edu/~mcdonald/examples/damped.pdf
  12. Bateman H Phys. Rev. 38 815 (1931)
  13. Dekker H Z. Phys. B 26 273 (1977)
  14. Dekker H Phys. Rev. A 16 2126 (1977)
  15. Rajeev S G Ann. Physics 322 1541 (2007); Rajeev S G quant-ph/0701141
  16. Galley C R Phys. Rev. Lett. 110 174301 (2013); Galley C R arXiv:1210.2745
  17. Caldirola P Nuovo Cimento 18 393 (1941)
  18. Kanai E Prog. Theor. Phys. 3 440 (1948)
  19. Leone R, Gourieux T Eur. J. Phys. 36 065022 (2015)
  20. Senitzky I R Phys. Rev. 119 670 (1960)
  21. Krieger T J Phys. Rev. 121 1388 (1961)
  22. Ford G W, Kac M, Mazur P J. Math. Phys. 6 504 (1965)
  23. Ullersma P Physica 32 27 (1966)
  24. Caldeira A O, Leggett A J Phys. Rev. Lett. 46 211 (1981)
  25. Ford G W, Lewis J T, O’Connell R F Phys. Rev. A 37 4419 (1988)
  26. Ankerhold J, Grabert H, Ingold G-L Phys. Rev. E 52 4267 (1995)
  27. Jafari M, Kheirandish F Laser Phys. 27 015201 (2017)
  28. Riewe F Phys. Rev. E 53 1890 (1996)
  29. Riewe F Phys. Rev. E 55 3581 (1997)
  30. Pyatnitskii E S i dr Sbornik Zadach Po Analiticheskoi Mekhanike 3-e izd. (M.: Fizmatlit, 2002)
  31. Andronov A A, Vitt A A, Khaikin S E Teoriya Kolebanii 2-e izd., pererab. i ispr. (M.: Nauka, 1981); Per. na angl. yaz., Andronov A A, Vitt A A, Khaikin S E Theory Of Oscillators (New York: Dover, 1987)
  32. Rabinovich M I, Trubetskov D I Vvedenie v Teoriyu Kolebanii i Voln (M.: Nauka, 1984); Per. na angl. yaz., Rabinovich M I, Trubetskov D I Oscillations And Waves In Linear And Nonlinear Systems (Dordrecht: Kluwer Acad. Publ., 1989)
  33. Whittaker E T A Treatise On The Analytical Dynamics Of Particles And Rigid Bodies (Cambridge: Cambridge Univ. Press, 1988); Per. na russk. yaz., Uitteker E T Analiticheskaya Dinamika (M.: URSS, 2004)
  34. Arnol’d V I Matematicheskie Metody Klassicheskoi Mekhaniki (M.: URSS, 2003); Per. na angl. yaz., Arnold V I Mathematical Methods Of Classical Mechanics (New York: Springer, 1997)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions