Reviews of topical problems

Apertureless near-field optical microscopy

 a,  b,  b,  b,  c
a National Research Center "Kurchatov Institute", Alikhanov Institute of Theoretical and Experimental Physics, ul. B. Cheremushkinskaya 25, Moscow, 117218, Russian Federation
b NT-MDT Spectrum Instruments, Zelenograd, Russian Federation
c Moscow Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation

This paper discusses the operating principles of the Apertureless Scanning Near-field Optical Microscope (ASNOM), in which the probe acts as a rod antenna and its electromagnetic radiation plays a role of the registered signal. The phase and amplitude of the emitted wave vary depending on the 'grounding conditions' of the antenna tip at the sample point under study. The weak radiation from a tiny (2—15 μm long) tip is detected using optical homo- and heterodyning and the nonlinear dependence of the tip polarizability on the tip-surface distance. The lateral resolution of ASNOM is determined by the tip curvature radius (1—20 nm) regardless of the wavelength (500 nm—100 μm). Capabilities of ASNOM are shown to provide surface optical map with nanometer resolution and to carry out spectral- and time-resolved measurements in a selected point of sample.

Fulltext is available at IOP
Keywords: scanning near-field microscopy, Raman scattering, nanostructures, ASNOM
PACS: 07.60.−j, 07.79.Fc, 61.46.−w, 68.37.Ps, 68.65.Pq, 85.30.De, 87.64.−t (all)
DOI: 10.3367/UFNe.2016.05.037817
Citation: Kazantsev D V, Kuznetsov E V, Timofeev S V, Shelaev A V, Kazantseva E A "Apertureless near-field optical microscopy" Phys. Usp. 60 259–275 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, April 2016, revised: 24th, May 2016, 24th, May 2016

Оригинал: Казанцев Д В, Кузнецов Е В, Тимофеев С В, Шелаев А В, Казанцева Е А «Безапертурная микроскопия ближнего оптического поля» УФН 187 277–295 (2017); DOI: 10.3367/UFNr.2016.05.037817

References (156) Cited by (9) Similar articles (20) ↓

  1. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  2. A.E. Krasnok, I.S. Maksymov et alOptical nanoantennas56 539–564 (2013)
  3. V.P. Tychinskii “Dynamic phase microscopy: is a “dialogue” with the cell possible?50 513–528 (2007)
  4. V.A. Milichko, A.S. Shalin et alSolar photovoltaics: current state and trends59 727–772 (2016)
  5. V.I. Balykin “Plasmon nanolaser: current state and prospects61 846–870 (2018)
  6. V.I. Balykin, P.N. Melentiev “Optics and spectroscopy of a single plasmonic nanostructure61 133–156 (2018)
  7. L.S. Uspenskaya, A.L. Rakhmanov “Dynamical magnetic structures in superconductors and ferromagnets55 639–656 (2012)
  8. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensors60 1236–1267 (2017)
  9. A.G. Syromyatnikov, S.V. Kolesnikov et alFormation and properties of metallic atomic chains and wires64 671–701 (2021)
  10. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry61 645–691 (2018)
  11. G.E. Abrosimova “Evolution of the structure of amorphous alloys54 1227–1242 (2011)
  12. Yu.V. Gulyaev, S.V. Tarasenko, V.G. Shavrov “Electromagnetic analogue of a first-type leaky surface elastic wave for the single interface between transparent dielectric media63 872–887 (2020)
  13. V.P. Krainov, B.M. Smirnov, M.B. Smirnov “Femtosecond excitation of cluster beams50 907–931 (2007)
  14. A.V. Kildishev, V.M. Shalaev “Transformation optics and metamaterials54 53–63 (2011)
  15. I.A. Vasil’eva “Stationary radiation of objects with scattering media44 1255–1282 (2001)
  16. A.P. Porfirev, A.A. Kuchmizhak et alPhase singularities and optical vortices in photonics”, accepted
  17. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applications60 539–558 (2017)
  18. R.A. Andrievski “High-melting point compounds: new approaches and new results60 276–289 (2017)
  19. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  20. A.I. Gusev “High-energy ball milling of nonstoichiometric compounds63 342–364 (2020)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions