Reviews of topical problems

Third generation Cu-In-Ga-(S,-Se) based solar inverters

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation

This paper reviews literature data on thin film solar cells with an absorbing quaternary layer of Cu-In-Ga-(S,-Se) (CIGS). The paper considers methods of preparation of CIGS layers and discusses the chemical composition, design features and operating principles of CIGS solar cells. The bulk of recent literature reveals how research in the field is starting to change: important results are being obtained by numerically simulating processes in thin-film solar cells; element concentration gradients in the CIGS structure, the spatially nonuniform band gap distribution, and layer grain boundaries are receiving increasing research attention for their respective roles; and kinetic studies are increasing.

Fulltext is available at IOP
Keywords: photovoltaics, thin films, solar cells, chalcopyrites, CIGS
PACS: 81.05.Hd, 84.60.Jt, 88.40.fc, 88.40.jn (all)
DOI: 10.3367/UFNe.2016.06.037827
Citation: Novikov G F, Gapanovich M V "Third generation Cu-In-Ga-(S,-Se) based solar inverters" Phys. Usp. 60 161–178 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, March 2016, revised: 3rd, June 2016, 9th, June 2016

Оригинал: Новиков Г Ф, Гапанович М В «Солнечные преобразователи третьего поколенияна основе Cu-In-Ga-(S, Se)» УФН 187 173–191 (2017); DOI: 10.3367/UFNr.2016.06.037827

References (228) Cited by (24) Similar articles (20) ↓

  1. V.A. Milichko, A.S. Shalin et alSolar photovoltaics: current state and trends59 727–772 (2016)
  2. G.A. Mesyats “Ecton or electron avalanche from metal38 567–590 (1995)
  3. V.F. Tarasenko, S.I. Yakovlenko “The electron runaway mechanism in dense gases and the production of high-power subnanosecond electron beams47 887–905 (2004)
  4. L.I. Krishtalik “Proteins as specific polar media for charge transfer processes55 1192–1213 (2012)
  5. M.V. Durnev, M.M. Glazov “Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides61 825–845 (2018)
  6. V.V. Lider “X-ray holography58 365–383 (2015)
  7. S.Ya. Vetrov, I.V. Timofeev, V.F. Shabanov “Localized modes in chiral photonic structures63 33–56 (2020)
  8. L.A. Falkovsky “Investigation of semiconductors with defects using Raman scattering47 249–272 (2004)
  9. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonics61 1035–1050 (2018)
  10. A.P. Levanyuk, V.V. Osipov “Edge luminescence of direct-gap semiconductors24 187–215 (1981)
  11. E.G. Maksimov, A.E. Karakozov “On nonadiabatic effects in phonon spectra of metals51 535–549 (2008)
  12. R.L. Aptekar, A.M. Bykov et alCosmic gamma-ray bursts and soft gamma-repeaters — observations and modeling of extreme astrophysical phenomena (100th anniversary of the Ioffe Institute)62 739–753 (2019)
  13. A.S. Andreenko, S.A. Nikitin “Magnetic properties of amorphous rare-earth — 3d-transition-metal alloys40 581–597 (1997)
  14. S.S. Gershtein, V.I. Petrukhin et alMesoatomic processes and model of large mesic molecules12 1–19 (1969)
  15. P.A. Krachkov, R.N. Lee, A.I. Mil’shtein “Quantum electrodynamics processes in the interaction of high-energy particles with atoms59 619–641 (2016)
  16. L.V. Doronina-Amitonova, I.V. Fedotov et alNeurophotonics: optical methods to study and control the brain58 345–364 (2015)
  17. B.P. Filippov “Mass ejections from the solar atmosphere62 847–864 (2019)
  18. G.N. Makarov “New results for laser isotope separation using low-energy methods63 245–268 (2020)
  19. L.I. Miroshnichenko “Solar cosmic rays: 75 years of research61 323–352 (2018)
  20. A.M. Zheltikov “The Raman effect in femto- and attosecond physics54 29–51 (2011)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions