Issues

 / 

2015

 / 

January

  

Reviews of topical problems


Current progress in developing the nonlinear ionization theory of atoms and ions

 a,  a,  a,  b
a National Research Nuclear University MEPhI, Kashirskoe shosse 31, Moscow, 115409, Russian Federation
b Russian Federation State Scientific Center A.I. Alikhanov Institute ofTheoretical and Experimental Physics, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

This paper reviews the status ofthe theory ofionization ofatoms and ions by intense laser radiation (Keldysh's theory). It discusses the applicability ofthe theory, its relation to the Landau—Dykhne method and its application tothe ionization ofatoms byultrashort nonmonochromatic laser pulses ofarbitrary shape. The semiclassical Imaginary Time Method is applied to describe electron sub-barrier motion using classical equations ofmotion with imaginary time t → it for anelectron inthe field ofanelectromagnetic wave. The paper discusses tunneling interference of transition amplitudes, a phenomenon generating fast oscillations inthe momentum distribution ofphotoelectrons. A nonperturbative account of the Coulomb interaction between the outgoing electron and the atomic residual causes significant changes in the photoelectron momentum distribution and in the level ionization rates, the latter usually increasing by orders of magnitude both for tunneling and multiphoton ionization. The effect of a static magnetic field onthe ionization rate and the magnetic cumulation process isexamined. The theory ofrelativistic tunneling isdiscussed, relativistic and spin corrections tothe ionization rate are calculated, and the applicability limits of the nonrelativistic Keldysh theory are determined. Finally, the application ofthe Fock method to the covariant description ofnonlinear ionization inthe relativistic regime isdiscussed.

Fulltext is available at IOP
Keywords: tunnel and multiphoton ionization, relativistic ionization, intense laser radiation, superstring magnetic field, Keldysh theory, imaginary time method
PACS: 03.65.Sq, 32.80.Fb, 32.80.Rm, 32.80.Wr, 34.80.Qb (all)
DOI: 10.3367/UFNe.0185.201501b.0003
URL: https://ufn.ru/en/articles/2015/1/b/
Citation: Karnakov B M, Mur V D, Popruzhenko S V, Popov V S "Current progress in developing the nonlinear ionization theory of atoms and ions" Phys. Usp. 58 3–32 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, July 2014, revised: 4th, October 2014, 15th, July 2014

:   ,   ,   ,    « » 185 3–34 (2015); DOI: 10.3367/UFNr.0185.201501b.0003

References (177) Cited by (41) ↓ Similar articles (20)

  1. Ni H, Brennecke S et al Phys. Rev. Lett. 125 (7) (2020)
  2. Andreev A V, Angeluts A A et al IEEE Trans. THz Sci. Technol. 10 85 (2020)
  3. Ciappina M F, Bulanov S V et al Topics In Applied Physics Vol. Progress in Ultrafast Intense Laser Science XV136 Chapter 8 (2020) p. 149
  4. Ciappina M F, Peganov E E, Popruzhenko S V Matter And Radiation At Extremes 5 044401 (2020)
  5. Bauer Ja H, Walczak Z Phys. Rev. A 101 (6) (2020)
  6. Murakami E, Mizoguchi R et al Journal Of Photochemistry And Photobiology A: Chemistry 369 16 (2019)
  7. Popov V S, Popruzhenko S V Phys. Atom. Nuclei 82 1583 (2019)
  8. Rylyuk V M Phys. Rev. A 100 (5) (2019)
  9. Larionov N V, Makarov D N et al J. Exp. Theor. Phys. 129 949 (2019)
  10. Makarov D N, Eseev M K, Makarova K A Opt. Lett. 44 3042 (2019)
  11. Rylyuk V M Eur. Phys. J. D 72 (12) (2018)
  12. Costin O, Costin R D, Lebowitz J L Commun. Math. Phys. 361 217 (2018)
  13. Gelfer E, Elkina N, Fedotov A Sci Rep 8 (1) (2018)
  14. Ni H, Saalmann U, Rost Ja-M Phys. Rev. A 97 (1) (2018)
  15. Gelfer E G, Fedotov A M, Weber S Plasma Phys. Control. Fusion 60 064005 (2018)
  16. Kostyukov I Yu, Golovanov A A Phys. Rev. A 98 (4) (2018)
  17. Ni H, Eicke N et al Phys. Rev. A 98 (1) (2018)
  18. Kornev A S, Zon B A Phys. Rev. A 97 (3) (2018)
  19. Zheltikov A M Uspekhi Fizicheskikh Nauk 187 1169 (2017)
  20. Artemenko I I, Kostyukov I Yu Phys. Rev. A 96 (3) (2017)
  21. Bychkov A B, Kozhina A S et al Opt. Spectrosc. 123 338 (2017)
  22. Makarov D N, Matveev V I et al EPJ Web Conf. 132 03031 (2017)
  23. Makarov D N, Makarov D N i dr Teoreticheskaya Matematicheskaya Fizika 191 25 (2017) [Makarov D N, Matveev V I Theor Math Phys 191 491 (2017)]
  24. Silaev A A, Romanov A A et al J. Phys.: Conf. Ser. 826 012014 (2017)
  25. Frolov M V, Manakov N L et al Phys. Rev. A 96 (2) (2017)
  26. Makarov D N, Matveev V I J. Exp. Theor. Phys. 125 189 (2017)
  27. Rensink T C, Antonsen T M Phys. Rev. A 94 (6) (2016)
  28. Makarov D N, Matveev V I Jetp Lett. 103 756 (2016)
  29. Vysotskii M I, Dolgov A D, Novikov V A Uspekhi Fizicheskikh Nauk 186 869 (2016)
  30. Keldysh L V Her. Russ. Acad. Sci. 86 413 (2016)
  31. Popov V S, Mur V D et al J. Exp. Theor. Phys. 122 539 (2016)
  32. Artemenko I I, Golovanov A A et al Jetp Lett. 104 883 (2016)
  33. Makarov D N, Matveev V I Jetp Lett. 103 415 (2016)
  34. Rylyuk V M Phys. Rev. A 93 (5) (2016)
  35. Nosaeva T A, Syrodoev G A Tech. Phys. 61 1776 (2016)
  36. Krajewska K, Kamiński J Z Phys. Rev. A 94 (1) (2016)
  37. Krajewska K, Kamiński J Z Physics Letters A 380 1247 (2016)
  38. Krajewska K, Kamiński J Z Phys. Rev. A 92 (4) (2015)
  39. Karnakov B M Jetp Lett. 101 825 (2015)
  40. Popruzhenko S V, Tulsky V A Phys. Rev. A 92 (3) (2015)
  41. Bulanov S V, Wilkens Ja J et al Uspekhi Fizicheskikh Nauk 184 1265 (2014) [Bulanov S V, Wilkens J J et al Phys.-Usp. 57 1149 (2014)]

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions