Issues

 / 

2013

 / 

July

  

Methodological notes


Nonlinear dynamics of quadratically cubic systems

 a, b, c, d, e
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
c Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Bolshaya Gruzinskaya ul. 10, Moscow, 123995, Russian Federation
d N.I. Lobachevskii Nizhnii Novgorod State University, prosp. Gagarina 23, Nizhnii Novgorod, Russian Federation
e Blekinge Institute of Technology, Karlskrona, Sweden

A modified form of the known nonlinear dynamics equations is proposed which uses quadratic relations to model cubic nonlinearity. It is shown that such quadratically cubic equations are sometimes amenable to exact solutions and that sometimes they make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and nonlinear partial differential equations of the Hopf, Burgers, Korteveg—de Vries, and Schrödinger types. Some problems are solved exactly in the spatiotemporal and spectral representations. The unsolved problems potentially amenable to the proposed approach are listed.

Fulltext pdf (536 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201307b.0719
PACS: 02.30.Jr, 05.45.−a, 42.65.−k, 43.25.+y (all)
DOI: 10.3367/UFNe.0183.201307b.0719
URL: https://ufn.ru/en/articles/2013/7/b/
000325716100002
2-s2.0-84885986245
2013PhyU...56..683R
Citation: Rudenko O V "Nonlinear dynamics of quadratically cubic systems" Phys. Usp. 56 683–690 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, April 2013, revised: 29th, April 2013, 9th, April 2013

Оригинал: Руденко О В «Нелинейная динамика квадратично кубичных систем» УФН 183 719–726 (2013); DOI: 10.3367/UFNr.0183.201307b.0719

References (24) Cited by (19) Similar articles (20) ↓

  1. V.F. Kovalev, D.V. Shirkov “Renormalization-group symmetries for solutions of nonlinear boundary value problemsPhys. Usp. 51 815–830 (2008)
  2. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and applicationPhys. Usp. 53 91–98 (2010)
  3. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  4. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  5. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  6. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefromPhys. Usp. 36 (2) 81–93 (1993)
  7. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  8. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  9. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  10. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  11. V.P. Bykov “Basic properties of squeezed lightSov. Phys. Usp. 34 (10) 910–924 (1991)
  12. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  13. V.S. Zapasskii “On electromagnetically induced transparency in the degenerate Λ-schemePhys. Usp. 52 179–181 (2009)
  14. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  15. V.P. Silin, P.V. Silin “Bifurcation properties of the bremsstrahlung harmonics generated by a pumping field in plasmasPhys. Usp. 50 729–740 (2007)
  16. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  17. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  18. B.Ya. Zel’dovich, M.J. Soileau “Bi-frequency pendulum on a rotary platform: modeling various optical phenomenaPhys. Usp. 47 1239–1255 (2004)
  19. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experimentPhys. Usp. 52 235–255 (2009)
  20. S.V. Sazonov “Superluminal electromagnetic solitons in nonequilibrium mediaPhys. Usp. 44 631–644 (2001)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions