Issues

 / 

2013

 / 

July

  

Methodological notes


Nonlinear dynamics of quadratically cubic systems

 a, b, c, d, e
a Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119942, Russian Federation
c Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Bolshaya Gruzinskaya ul. 10, Moscow, 123995, Russian Federation
d N.I. Lobachevskii Nizhnii Novgorod State University, prosp. Gagarina 23, Nizhnii Novgorod, Russian Federation
e Blekinge Institute of Technology, Karlskrona, Sweden

A modified form of the known nonlinear dynamics equations is proposed which uses quadratic relations to model cubic nonlinearity. It is shown that such quadratically cubic equations are sometimes amenable to exact solutions and that sometimes they make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and nonlinear partial differential equations of the Hopf, Burgers, Korteveg—de Vries, and Schrödinger types. Some problems are solved exactly in the spatiotemporal and spectral representations. The unsolved problems potentially amenable to the proposed approach are listed.

Fulltext is available at IOP
PACS: 02.30.Jr, 05.45.−a, 42.65.−k, 43.25.+y (all)
DOI: 10.3367/UFNe.0183.201307b.0719
URL: https://ufn.ru/en/articles/2013/7/b/
Citation: Rudenko O V "Nonlinear dynamics of quadratically cubic systems" Phys. Usp. 56 683–690 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, April 2013, revised: 29th, April 2013, 9th, April 2013

Оригинал: Руденко О В «Нелинейная динамика квадратично кубичных систем» УФН 183 719–726 (2013); DOI: 10.3367/UFNr.0183.201307b.0719

References (24) Cited by (12) Similar articles (20) ↓

  1. V.F. Kovalev, D.V. Shirkov “Renormalization-group symmetries for solutions of nonlinear boundary value problems51 815–830 (2008)
  2. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and application53 91–98 (2010)
  3. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equation57 1035–1037 (2014)
  4. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamics46 393–403 (2003)
  5. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  6. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefrom36 (2) 81–93 (1993)
  7. E.N. Rumanov “Critical phenomena far from equilibrium56 93–102 (2013)
  8. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic model57 453–460 (2014)
  9. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitter57 1022–1034 (2014)
  10. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signals50 819–834 (2007)
  11. V.P. Bykov “Basic properties of squeezed light34 (10) 910–924 (1991)
  12. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sources32 723–731 (1989)
  13. V.S. Zapasskii “On electromagnetically induced transparency in the degenerate Λ-scheme52 179–181 (2009)
  14. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systems51 395–407 (2008)
  15. V.P. Silin, P.V. Silin “Bifurcation properties of the bremsstrahlung harmonics generated by a pumping field in plasmas50 729–740 (2007)
  16. A. Loskutov “Dynamical chaos: systems of classical mechanics50 939–964 (2007)
  17. B.Ya. Zel’dovich, M.J. Soileau “Bi-frequency pendulum on a rotary platform: modeling various optical phenomena47 1239–1255 (2004)
  18. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experiment52 235–255 (2009)
  19. S.V. Sazonov “Superluminal electromagnetic solitons in nonequilibrium media44 631–644 (2001)
  20. A.N. Oraevskii “Superluminal waves in amplifying media41 1199–1209 (1998)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions