Issues

 / 

2013

 / 

May

  

Reviews of topical problems


Relativistic mirrors in plasmas — novel results and perspectives

 a, b,  a,  a,  a,  c, d, e
a Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kyoto, Kizugawa-shi, 619-0215, Japan
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
c S I Vavilov State Optical Institute, Birzhevaya liniya 12, St. Petersburg, 199034, Russian Federation
d ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
e Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

In plasmas, the relativistic flying mirrors are thin and dense electron or electron—ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media the refraction index modulations are induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. This scientific area promises the development of the sources of ultrashort X-ray pulses in atosecond range. Expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play the key role. In the co-propagating configuration, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism.

Fulltext pdf (6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201305a.0449
PACS: 52.35.Mw, 52.38.Ph, 52.59.Ye (all)
DOI: 10.3367/UFNe.0183.201305a.0449
URL: https://ufn.ru/en/articles/2013/5/a/
000322890700001
2013PhyU...56..429B
Citation: Bulanov S V, Esirkepov T Zh, Kando M, Pirozhkov A S, Rosanov N N "Relativistic mirrors in plasmas — novel results and perspectives" Phys. Usp. 56 429–464 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, July 2012, 27th, July 2012

Оригинал: Буланов С В, Есиркепов Т Ж, Кандо М, Пирожков А С, Розанов Н Н «Релятивистские зеркала в плазме — новые результаты и перспективы» УФН 183 449–486 (2013); DOI: 10.3367/UFNr.0183.201305a.0449

References (181) Cited by (120) Similar articles (20) ↓

  1. A.V. Korzhimanov, A.A. Gonoskov et alHorizons of petawatt laser technologyPhys. Usp. 54 9–28 (2011)
  2. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapyPhys. Usp. 57 1149–1179 (2014)
  3. S.V. Popruzhenko, A.M. Fedotov “Dynamics and radiation of charged particles in ultra-intense laser fieldsPhys. Usp. 66 460–493 (2023)
  4. B.M. Karnakov, V.D. Mur et alCurrent progress in developing the nonlinear ionization theory of atoms and ionsPhys. Usp. 58 3–32 (2015)
  5. I.I. Metelskii, V.F. Kovalev, V.Yu. Bychenkov “Relativistic-nonlinear resonant absorption and generation of harmonics of electromagnetic radiation in an inhomogeneous plasmaPhys. Usp. 67 429–463 (2024)
  6. V.S. Popov “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)Phys. Usp. 47 855–885 (2004)
  7. V.V. Strelkov, V.T. Platonenko et alAttosecond electromagnetic pulses: generation, measurement, and application. Generation of high-order harmonics of intense laser field for attosecond pulse productionPhys. Usp. 59 425–445 (2016)
  8. V.S. Belyaev, V.P. Krainov et alGeneration of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targetsPhys. Usp. 51 793–814 (2008)
  9. Ya.B. Zel’dovich “Interaction of free electrons with electromagnetic radiationSov. Phys. Usp. 18 79–98 (1975)
  10. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physicsPhys. Usp. 53 51–76 (2010)
  11. I.N. Kosarev “Kinetic theory of plasmas and gases. Interaction of high-intensity laser pulses with plasmasPhys. Usp. 49 1239–1252 (2006)
  12. G.V. Fetisov “X-ray diffraction methods for structural diagnostics of materials: progress and achievementsPhys. Usp. 63 2–32 (2020)
  13. G.A. Askar’yan “The self-focusing effectSov. Phys. Usp. 16 680–686 (1974)
  14. P.G. Kryukov, V.S. Letokhov “Propagation of a Light pulse in a Resonantly amplifying (absorbing) mediumSov. Phys. Usp. 12 641–672 (1970)
  15. V.S. Beskin “Magnetohydrodynamic models of astrophysical jetsPhys. Usp. 53 1199–1233 (2010)
  16. M.Yu. Ryabikin, M.Yu. Emelin, V.V. Strelkov “Attosecond electromagnetic pulses: generation, measurement, and application. Attosecond metrology and spectroscopyPhys. Usp. 66 360–380 (2023)
  17. A.A. Ishchenko, S.A. Aseev et alUltrafast electron diffraction and electron microscopy: present status and future prospectsPhys. Usp. 57 633–669 (2014)
  18. V.P. Silin “Absorption of radiation by turbulent laser plasmasSov. Phys. Usp. 28 136–152 (1985)
  19. R.A. Ganeev “High order harmonics generation in laser surface ablation: current trendsPhys. Usp. 56 772–800 (2013)
  20. V.L. Ginzburg, A.V. Gurevich “Nonlinear phenomena in a Plasma located in an alternating electromagnetic fieldSov. Phys. Usp. 3 175–194 (1960)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions