Reviews of topical problems

Relativistic mirrors in plasmas — novel results and perspectives

 a, b,  a,  a,  a,  c, d, e
a Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kyoto, Kizugawa-shi, 619-0215, Japan
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119942, Russian Federation
c S I Vavilov State Optical Institute, Birzhevaya liniya 12, St. Petersburg, 199034, Russian Federation
d ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
e Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

In plasmas, the relativistic flying mirrors are thin and dense electron or electron—ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media the refraction index modulations are induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. This scientific area promises the development of the sources of ultrashort X-ray pulses in atosecond range. Expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play the key role. In the co-propagating configuration, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism.

Fulltext is available at IOP
PACS: 52.35.Mw, 52.38.Ph, 52.59.Ye (all)
DOI: 10.3367/UFNe.0183.201305a.0449
Citation: Bulanov S V, Esirkepov T Zh, Kando M, Pirozhkov A S, Rosanov N N "Relativistic mirrors in plasmas — novel results and perspectives" Phys. Usp. 56 429–464 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, July 2012, 27th, July 2012

Оригинал: Буланов С В, Есиркепов Т Ж, Кандо М, Пирожков А С, Розанов Н Н «Релятивистские зеркала в плазме — новые результаты и перспективы» УФН 183 449–486 (2013); DOI: 10.3367/UFNr.0183.201305a.0449

References (181) Cited by (78) Similar articles (20) ↓

  1. A.V. Korzhimanov, A.A. Gonoskov et alHorizons of petawatt laser technology54 9–28 (2011)
  2. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapy57 1149–1179 (2014)
  3. B.M. Karnakov, V.D. Mur et alCurrent progress in developing the nonlinear ionization theory of atoms and ions58 3–32 (2015)
  4. V.V. Strelkov, V.T. Platonenko et alAttosecond electromagnetic pulses: generation, measurement, and application. Generation of high-order harmonics of intense laser field for attosecond pulse production59 425–445 (2016)
  5. V.S. Belyaev, V.P. Krainov et alGeneration of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets51 793–814 (2008)
  6. V.S. Popov “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)47 855–885 (2004)
  7. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physics53 51–76 (2010)
  8. I.N. Kosarev “Kinetic theory of plasmas and gases. Interaction of high-intensity laser pulses with plasmas49 1239–1252 (2006)
  9. G.V. Fetisov “X-ray diffraction methods for structural diagnostics of materials: progress and achievements63 2–32 (2020)
  10. P.G. Kryukov, V.S. Letokhov “Propagation of a Light pulse in a Resonantly amplifying (absorbing) medium12 641–672 (1970)
  11. A.A. Ishchenko, S.A. Aseev et alUltrafast electron diffraction and electron microscopy: present status and future prospects57 633–669 (2014)
  12. Ya.B. Zel’dovich “Interaction of free electrons with electromagnetic radiation18 79–98 (1975)
  13. I.M. Ternov “Synchrotron radiation38 409–434 (1995)
  14. A.Y. Potekhin “Atmospheres and radiating surfaces of neutron stars57 735–770 (2014)
  15. V.N. Tsytovich “Nonlinear effects in a plasma9 805–836 (1967)
  16. V.D. Shiltsev “High energy particle colliders: past 20 years, next 20 years and beyond55 965–976 (2012)
  17. F.G. Bass, Yu.G. Gurevich “Nonlinear theory of the propagation of electromagnetic waves in a Solid-state plasma and in a Gaseous discharge14 113–124 (1971)
  18. I.Yu. Skobelev, A.Ya. Faenov et alSpectra of hollow ions in an ultradense laser plasma55 47–71 (2012)
  19. V.B. Efimov “Acoustic turbulence of second sound waves in superfluid helium61 929–951 (2018)
  20. S.A. Aseyev, A.S. Akhmanov et alStructural dynamics of free molecules and condensed matter63 103–122 (2020)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions