Issues

 / 

2013

 / 

May

  

Reviews of topical problems


Relativistic mirrors in plasmas — novel results and perspectives

 a, b,  a,  a,  a,  c, d, e
a Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kyoto, Kizugawa-shi, 619-0215, Japan
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119942, Russian Federation
c S I Vavilov State Optical Institute, Birzhevaya liniya 12, St. Petersburg, 199034, Russian Federation
d St.Petersburg National Research University of Information Technologies, Mechanics and Optics, ul. Sablinskaya14, St.Petersburg, 197101, Russian Federation
e Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

In plasmas, the relativistic flying mirrors are thin and dense electron or electron—ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media the refraction index modulations are induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. This scientific area promises the development of the sources of ultrashort X-ray pulses in atosecond range. Expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play the key role. In the co-propagating configuration, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 52.35.Mw, 52.38.Ph, 52.59.Ye (all)
DOI: 10.3367/UFNe.0183.201305a.0449
URL: https://ufn.ru/en/articles/2013/5/a/
Citation: Bulanov S V, Esirkepov T Zh, Kando M, Pirozhkov A S, Rosanov N N "Relativistic mirrors in plasmas — novel results and perspectives" Phys. Usp. 56 429–464 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, July 2012, 27th, July 2012

:   ,   ,  ,   ,    «   —  » 183 449–486 (2013); DOI: 10.3367/UFNr.0183.201305a.0449

References (181) Cited by (55) ↓ Similar articles (20)

  1. Yano M, Zhidkov A et al High Energy Density Physics 30 21 (2019)
  2. Poshakinskiy A  V, Poddubny A  N Phys. Rev. X 9 (1) (2019)
  3. Kadlecová H, Korn G, Bulanov S V Phys. Rev. D 99 (3) (2019)
  4. Moghadasin H, Niknam A R et al Physics Of Plasmas 26 093105 (2019)
  5. Bulanov S V Rend. Fis. Acc. Lincei 30 5 (2019)
  6. Levato T, Bonora S et al Applied Sciences 8 1565 (2018)
  7. Kando M, Esirkepov T et al QuBS 2 9 (2018)
  8. Koga Ja K, Bulanov S V et al Plasma Phys. Control. Fusion 60 074007 (2018)
  9. Rafelski J Eur. Phys. J. A 54 (2) (2018)
  10. Shiryaev O B Laser Part. Beams 35 64 (2017)
  11. Wang W P, Shen B F, Xu Z Z Physics Of Plasmas 24 013104 (2017)
  12. Arkhipov R M, Arkhipov M V et al Opt. Spectrosc. 123 610 (2017)
  13. Arkhipov R M, Arkhipov M V et al Laser Phys. Lett. 14 095402 (2017)
  14. Chen P, Mourou G Phys. Rev. Lett. 118 (4) (2017)
  15. Tang S, Kumar N, Keitel Ch H Phys. Rev. E 95 (5) (2017)
  16. Arkhipov R M, Pakhomov A V et al Jetp Lett. 105 408 (2017)
  17. Metelskii I I, Kovalev V F, Bychenkov V Yu Plasma Phys. Rep. 43 175 (2017)
  18. Sonia K K, Maheshwari K P, Jaiman N K J. Phys.: Conf. Ser. 836 012015 (2017)
  19. Bulanov S V, Esirkepov T Zh et al J. Plasma Phys. 82 (3) (2016)
  20. Arkhipov R M, Arkhipov M V et al Opt. Lett. 41 4983 (2016)
  21. Raicher E, Eliezer Sh, Zigler A Phys. Rev. A 94 (6) (2016)
  22. Mirzanejhad S, Taghipour M Optik 127 2914 (2016)
  23. Metelskii I I, Kovalev V F, Bychenkov V Yu Bull. Lebedev Phys. Inst. 43 16 (2016)
  24. Chukbar K V Plasma Phys. Rep. 42 1134 (2016)
  25. SONI KRISHNA KUMAR, MAHESHWARI K P Pramana - J Phys 87 (5) (2016)
  26. Bulanov S V, Esirkepov T Zh et al Plasma Sources Sci. Technol. 25 053001 (2016)
  27. Bulanov S V, Esirkepov T Zh et al J. Exp. Theor. Phys. 122 426 (2016)
  28. Pei Zh, Shen B et al Physics Of Plasmas 23 043107 (2016)
  29. Rosanov N N Opt. Spectrosc. 119 124 (2015)
  30. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IITowards the effect of transverse inhomogeneity of electromagnetic pulse on the process of ion acceleration in the RPDA regimeGeorgKornLuis O.SilvaK. V.LezhninF. F.KamenetsV. S.BeskinM.KandoT. Z.EsirkepovS. V.Bulanov9515 (2015) p. 95151L
  31. Bu Zh, Shen B et al Physics Of Plasmas 22 043102 (2015)
  32. Bulanov S V, Yogo A et al Physics Of Plasmas 22 063108 (2015)
  33. (Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles III) Vol. Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles IIIMaximum attainable ion energy in the radiation pressure acceleration regimeKenneth W. D.LedinghamKlausSpohrPaulMcKennaPaul R.BoltonEricEsareyCarl B.SchroederFlorian J.GrünerS. S.BulanovE.EsareyC. B.SchroederS. V.BulanovT. Z.EsirkepovM.KandoF.PegoraroW. P.Leemans9514 (2015) p. 95140G
  34. Bulanov S V, Esirkepov T Zh et al Plasma Phys. Rep. 41 1 (2015)
  35. Kiriyama H, Mori M et al IEEE J. Select. Topics Quantum Electron. 21 232 (2015)
  36. Lau C  K, Yeh P  C et al Phys. Rev. ST Accel. Beams 18 (2) (2015)
  37. Narozhny N B, Fedotov A M Contemporary Physics 56 249 (2015)
  38. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IIHigh-order harmonics from relativistic laser plasmasGeorgKornLuis O.SilvaSergei V.BulanovTimur Z.EsirkepovJames K.KogaAlexander S.PirozhkovKiminoriKondoMasakiKando9515 (2015) p. 95150C
  39. Lezhnin K V, Kamenets F F et al Physics Of Plasmas 22 033112 (2015)
  40. Rosanov N N, Matskovskii A A et al Opt. Spectrosc. 119 89 (2015)
  41. Bulanov S  S, Esarey E et al Phys. Rev. Lett. 114 (10) (2015)
  42. Malkin V M, Toroker Z, Fisch N J Phys. Rev. E 90 (6) (2014)
  43. Ebisuzaki T, Tajima T Astroparticle Physics 56 9 (2014)
  44. Vysotina N V, Rosanov N N, Shilov V B Opt. Spectrosc. 116 963 (2014)
  45. Bulanov S V, Wilkens Ja J et al Uspekhi Fizicheskikh Nauk 184 1265 (2014) [Bulanov S V, Wilkens J J et al Phys.-Usp. 57 1149 (2014)]
  46. Shi Y, Shen B et al Phys. Rev. Lett. 112 (23) (2014)
  47. Pirozhkov A S, Kando M et al New J. Phys. 16 093003 (2014)
  48. Li F Y, Sheng Z M et al Appl. Phys. Lett. 105 161102 (2014)
  49. Ma W  J, Bin J  H et al Phys. Rev. Lett. 113 (23) (2014)
  50. Esirkepov T Zh, Koga Ja K et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 745 150 (2014)
  51. Rozanov N N Opt. Spectrosc. 116 298 (2014)
  52. Bulanov S V, Esirkepov T Zh et al Physics Of Plasmas 20 123114 (2013)
  53. Mu J, Li F-Yu et al Appl. Phys. Lett. 103 261114 (2013)
  54. Bulanov S V, Zh E T et al Physics Of Plasmas 20 083113 (2013)
  55. Vysotina N V, Rosanov N N et al Opt. Spectrosc. 115 257 (2013)

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions