Issues

 / 

2011

 / 

May

  

Reviews of topical problems


Reactive diffusion in multilayer metal/silicon nanostructures


National Technical University ‘Kharkiv Polytechnical Institute’, ul. Frunze 21, Kharkov, 61002, Ukraine

Reactive diffusion in nanomaterials differs widely from that in bulk materials. Reviewed in this paper are the basic models and experimental data on how diffusion and phase transformations occur in multilayer nanosystems as these are being prepared and subsequently thermally annealed. The growth kinetics of amorphous silicide phases in Sc/Si and Mo/Si multilayer periodic systems are studied using the combination of high-resolution transmission electron microscopy and small-angle X-ray diffraction. A model is proposed for silicon diffusion through amorphous silicide that undergoes structural relaxation and crystallization as it grows. Anisotropic diffusion and growth of the silicide phase at adjacent interfaces are studied, and the diffusion parameters are measured for the earliest stages of diffusion annealing.

Fulltext pdf (904 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0181.201105c.0491
PACS: 66.30.−h, 68.35.Fx, 68.65.−k (all)
DOI: 10.3367/UFNe.0181.201105c.0491
URL: https://ufn.ru/en/articles/2011/5/c/
000294814900003
2-s2.0-80051862417
2011PhyU...54..473Z
Citation: Zubarev E N "Reactive diffusion in multilayer metal/silicon nanostructures" Phys. Usp. 54 473–498 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, June 2010, 21st, September 2010

Îðèãèíàë: Çóáàðåâ Å Í «Ðåàêöèîííàÿ äèôôóçèÿ â íàíîðàçìåðíûõ ñëîèñòûõ ñèñòåìàõ ìåòàëë/êðåìíèé» ÓÔÍ 181 491–520 (2011); DOI: 10.3367/UFNr.0181.201105c.0491

References (143) Cited by (28) ↓ Similar articles (20)

  1. Kondrat’ev S Yu, Tsemenko A V Met Sci Heat Treat 66 177 (2024)
  2. Anisimova M A, Knyazeva A G Interfac Phenom Heat Transfer 12 75 (2024)
  3. Stognei O V, Smirnov A N et al Bull. Russ. Acad. Sci. Phys. 87 1377 (2023)
  4. Stognei O V, Smirnov A N et al Izvestiâ Akademii Nauk SSSR. Seriâ Fizičeskaâ 87 1348 (2023)
  5. Wu J, Qi R et al Front. Phys. 10 (2022)
  6. Arlington Sh Q, Fritz G M, Weihs T P Annu. Rev. Mater. Res. 52 219 (2022)
  7. Stognei O V, Smirnov A N et al Solid State Communications 330 114251 (2021)
  8. Zhu J, Ji B et al Applied Surface Science 515 146066 (2020)
  9. Kondrat’ev S Yu, Anastasiadi G P et al Materialia 7 100427 (2019)
  10. Lu M, Mao Y et al Chem. Commun. 54 8320 (2018)
  11. Drozdov M N, Drozdov Y N et al Thin Solid Films 661 65 (2018)
  12. Molokhina L A, Rogalin V E et al Russ. J. Phys. Chem. 91 2302 (2017)
  13. Plusnin Nikolay I Modern Electronic Materials 3 57 (2017)
  14. (EUV and X-ray Optics: Synergy between Laboratory and Space V) Vol. EUV and X-ray Optics: Synergy between Laboratory and Space V Development of depth-graded W/Si multilayer mirrors for x-ray focusing telescope application RenéHudecLadislavPinaRunzeQiQiushi HuangYangYangZhongZhangZhanshanWang10235 (2017) p. 102350G
  15. Komissarova T A, Lebedev M V et al Semicond. Sci. Technol. 32 045012 (2017)
  16. Huang Q, Zhang J et al Opt. Express 24 15620 (2016)
  17. Lytovchenko S V East Eur. J. Phys. 3 4 (2016)
  18. Knyazeva A G (AIP Conference Proceedings) Vol. 1683 (2015) p. 020084
  19. Drozdov M N, Drozdov Y N et al Thin Solid Films 577 11 (2015)
  20. Zhuravel’ I A, Bugaev E A et al Tech. Phys. 59 701 (2014)
  21. Dranenko A S, Lavrenko V A et al Powder Metall Met Ceram 52 572 (2014)
  22. Lakshun N K, Ghanashyam K M Philosophical Magazine 94 3431 (2014)
  23. Gao Q, Gu M et al Chem. Mater. 26 1660 (2014)
  24. Filatov A, Pogorelov A, Pogoryelov Y Physica Status Solidi (b) 251 172 (2014)
  25. Gu M, Wang Zh et al ACS Nano 7 6303 (2013)
  26. Wang Ch-M, Li X et al Nano Lett. 12 1624 (2012)
  27. Bozorg-Grayeli E, Li Z et al 112 (8) (2012)
  28. Ahamad M M, Ghanashyam K M 30 (6) (2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions