Issues

 / 

2008

 / 

February

  

Reviews of topical problems


Extremely dense arrays of germanium and silicon nanostructures

 a, b,  b
a Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Lavrenteva 13, Novosibirsk, 630090, Russian Federation
b Quantum-Phase Electronics Center, Department of Applied Physics, The University of Tokyo and Japan Science and Technology Agency, CREST, 7-3-1 Hongo, Tokyo, 113-8656, Japan

Results of investigations into surface processes of the formation of germanium and silicon nanostructures are analyzed. A mechanism of three-dimensional island nucleation and relaxation of strained two-dimensional layers in heteroepitaxy of germanium on silicon, which initiates spontaneous island growth, is considered. The oxidation of the silicon surface prior to germanium or silicon deposition drastically alters the growth mechanism, leading to the formation of islands with an extremely high areal density of 1012-1013 cm-2 and with sizes of less than 10 nm. The effects of spatial quantization determine their properties. Moreover, arrays of these islands form a unique surface for the growth of Si layers that are able to emit photons in the 1.5-1.6-μm wavelength range.

Fulltext pdf (2 MB)
Fulltext is also available at DOI: 10.1070/PU2008v051n02ABEH006344
PACS: 78.55.Ap, 81.07.−b, 81.16.−c (all)
DOI: 10.1070/PU2008v051n02ABEH006344
URL: https://ufn.ru/en/articles/2008/2/b/
000256729400002
2-s2.0-45149130684
2008PhyU...51..133S
Citation: Shklyaev A A, Ichikawa M "Extremely dense arrays of germanium and silicon nanostructures" Phys. Usp. 51 133–161 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шкляев А А, Ичикава М «Предельно плотные массивы наноструктур германия и кремния» УФН 178 139–169 (2008); DOI: 10.3367/UFNr.0178.200802b.0139

References (199) Cited by (66) ↓ Similar articles (20)

  1. Ramanandan S P, Reñé S J et al Nanoscale Horiz. 9 555 (2024)
  2. Shklyaev A A Thin Solid Films 768 139720 (2023)
  3. Tynyshtykbaev K B Elektronnaya Tekhnika. Seriya 3. Mikroelektronika (2) 76 (2023)
  4. Shklyaev A A, Tsarev A V IEEE Photonics J. 13 1 (2021)
  5. Dvornichenko A V Ukr. J. Phys. 66 439 (2021)
  6. Utkin D E, Tsarev A V et al Optoelectron.Instrument.Proc. 57 494 (2021)
  7. Dvornichenko A V, Kharchenko V O, Kharchenko D O Beilstein J. Nanotechnol. 12 694 (2021)
  8. Lisenko V S, Kondratenko S V i dr Ukr. J. Phys. 57 1132 (2021)
  9. Velikhanov A R Physica B: Condensed Matter 621 413205 (2021)
  10. Zhou Y, Lloyd A et al Surface Science 696 121594 (2020)
  11. Reich K V Phys.-Usp. 63 994 (2020)
  12. Lozovoy K A, Korotaev A G et al Surface And Coatings Technology 384 125289 (2020)
  13. Lozovoy K A, Kokhanenko A P et al Russ Phys J 63 296 (2020)
  14. Lozovoy K A, Kokhanenko A P et al Crystal Growth & Design 19 7015 (2019)
  15. Shklyaev A A, Latyshev A V Applied Surface Science 465 10 (2019)
  16. Lozovoy K, Kokhanenko A, Voitsekhovskii A Nanotechnology 29 054002 (2018)
  17. Nanosist. Nanomater. Nanotehnol. 16 (1) (2018)
  18. Lozovoy K A, Kokhanenko A P, Voitsekhovskii A V Surface Science 669 45 (2018)
  19. Matsui H, Ishibe T et al 112 (3) (2018)
  20. Izhnin I I, Fitsych O I et al Opto-Electronics Review 26 195 (2018)
  21. Izhnin I I, Fitsych O I et al Nanoscale Res Lett 12 (1) (2017)
  22. Shklyaev A A, Romanyuk K N et al Advances in Semiconductor Nanostructures (2017) p. 325
  23. Pishchagin A A, Voitsekhovskii A V et al J. Phys.: Conf. Ser. 741 012015 (2016)
  24. Shklyaev A A, Budazhapova A E Applied Surface Science 360 1023 (2016)
  25. Ishibe T, Matsui H et al Appl. Phys. Express 9 055508 (2016)
  26. Shklyaev A A, Latyshev A V Nanoscale Res Lett 11 (1) (2016)
  27. Lozovoy K A, Kokhanenko A P, Voitsekhovskii A V 109 (2) (2016)
  28. Ishibe T, Watanabe K, Nakamura Y Jpn. J. Appl. Phys. 55 08NB12 (2016)
  29. Saito Sh, Al-Attili A Z et al Semicond. Sci. Technol. 31 043002 (2016)
  30. Psarev V I, Parkhomenko L A J. Synch. Investig. 10 593 (2016)
  31. Lozovoy K A, Kokhanenko A P, Voitsekhovskii A V Crystal Growth & Design 15 1055 (2015)
  32. Shklyaev A A, Ponomarev K E Journal Of Crystal Growth 413 94 (2015)
  33. Shklyaev A, Bolotov L et al 117 (20) (2015)
  34. Tynyshtykbaev K B, Ryabikin Yu A et al Russ Microelectron 44 559 (2015)
  35. Yamasaka Sh, Nakamura Y et al Journal Of Elec Materi 44 2015 (2015)
  36. Psarev V I, Parkhomenko L A J. Synch. Investig. 8 1177 (2014)
  37. Shklyaev A A, Shegai O A et al 115 (20) (2014)
  38. Lysenko V S, Kondratenko S V, Kozyrev Yu N Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting Engineering Materials Chapter 19 (2014) p. 417
  39. Ponomarev K E, Shklyaev A A 2014 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), (2014) p. 10
  40. Gerasimenko N N, Tynyshtykbaev K B et al Semiconductors 48 1088 (2014)
  41. Shklyaev A A, Romanyuk K N, Kosolobov S S Surface Science 625 50 (2014)
  42. (Nanophotonics V) Vol. Nanophotonics VPhotocurrent spectroscopy of Ge nanoclusters grown on oxidized silicon surfaceDavid L.AndrewsJean-MichelNunziAndreasOstendorfA. A.MykytiukS. V.KondratenkoV. S.LysenkoYu. N.Kozyrev9126 (2014) p. 91263J
  43. Lysenko V S, Kondratenko S V et al Semicond. Sci. Technol. 28 085009 (2013)
  44. Shklyaev A A, Kozhukhov A S et al Applied Surface Science 267 40 (2013)
  45. Lysenko V S, Gomeniuk Y V et al AMR 854 11 (2013)
  46. Shklyaev A A, Romanyuk K N, Latyshev A V JSEMAT 03 195 (2013)
  47. Kuryliuk V V, Korotchenkov O A Semiconductors 47 1031 (2013)
  48. Garbar N P, Kudina V N et al AMR 854 21 (2013)
  49. Shklyaev A A, Gulyaev D V et al Optics Communications 286 228 (2013)
  50. Tynyshtykbaev K B, Aitmukan T et al MSA 04 1 (2013)
  51. Nadtochy A B, Korotchenkov O A, Kuryliuk V V Tech. Phys. 58 393 (2013)
  52. Ponomarev K E, Shklyaev A A 2013 14th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, (2013) p. 37
  53. Shklyaev A A, Latyshev A V, Ichikawa M Physics Procedia 32 117 (2012)
  54. Kurkina I I, Antonova I V et al 2 (3) (2012)
  55. Hernández-Hernández A, Rangel-Kuoppa V T et al 111 (4) (2012)
  56. Kulinich O A Russ Phys J 55 58 (2012)
  57. Shklyaev A A, Romanyuk K N et al Jetp Lett. 94 442 (2011)
  58. Ichikawa M Springer Series In Surface Sciences Vol. Nanophenomena at SurfacesFormation and Opto-electronic Properties of Nanostructures on Ultrathin SiO2-Covered Si Surfaces47 Chapter 10 (2011) p. 219
  59. Tynyshtykbaev K B 2011 International Conference on Multimedia Technology, (2011) p. 6528
  60. Romanyuk K N, Shklyaev A A et al Jetp Lett. 93 661 (2011)
  61. Shklyaev A A, Dultsev F N et al J. Phys. D: Appl. Phys. 44 025402 (2011)
  62. Psarev V I Russ. J. Non-ferrous Metals 51 398 (2010)
  63. Shklyaev A A, Latyshev A V, Ichikawa M Semiconductors 44 432 (2010)
  64. Shklyaev A A, Gorbunov A V, Ichikawa M 2010 11th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices, (2010) p. 59
  65. Shklyaev A A, Gorbunov A V, Ichikawa M 2009 International School and Seminar on Modern Problems of Nanoelectronics, Micro- and Nanosystem Technologies, (2009) p. 24
  66. Ichikawa M, Nakamura Y et al MRS Proc. 1145 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions