Reviews of topical problems

Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition

Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation

The calculation of the density of states for the Schrödinger equation with a Gaussian random potential is equivalent to the problem of a second-order transition with a ’wrong’ sign for the coefficient of the quartic term in the Ginzburg-Landau Hamiltonian. The special role of the dimension d = 4 for such a Hamiltonian can be seen from different viewpoints but is fundamentally determined by the renormalizability of the theory. The construction of an ε expansion in direct analogy with the phase-transition theory gives rise to the problem of a ’spurious’ pole. To solve this problem, a proper treatment of the factorial divergency of the perturbation series is necessary. Simplifications arising in high dimensions can be used for the development of a (4-ε)-dimensional theory, but this requires successive consideration of four types of theories: a nonrenormalizable theories for d > 4, nonrenormalizable and renormalizable theories in the logarithmic situation (d = 4), and a super-renormalizable theories for d < 4. An approximation is found for each type of theory giving asymptotically exact results. In the (4-ε)-dimensional theory, the terms of leading order in 1&#47;ε are only retained for N~1 (N is the order of the perturbation theory) while all degrees of 1&#47;ε are essential for large N in view of the fast growth of their coefficients. The latter are calculated in the leading order in N from the Callan-Symanzik equation with the results of Lipatov method used as boundary conditions. The qualitative effect is the same in all four cases and consists in a shifting of the phase transition point in the complex plane. This results in the elimination of the ’spurious’ pole and in regularity of the density of states for all energies. A discussion is given of the calculation of high orders of perturbation theory and a perspective of the ε expansion for the problem of conductivity near the Anderson transition.

Fulltext is available at IOP
PACS: 03.65.−w, 05.50.+q, 11.10.Hi, 71.23.An (all)
DOI: 10.1070/PU1998v041n05ABEH000392
Citation: Suslov I M "Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition" Phys. Usp. 41 441–467 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Суслов И М «Построение (4-ε)-мерной теории для плотности состояний неупорядоченной системы вблизи перехода Андерсона» УФН 168 503–530 (1998); DOI: 10.3367/UFNr.0168.199805b.0503

References (93) Cited by (18) Similar articles (20) ↓

  1. A.A. Vladimirov, D.V. Shirkov “The renormalization group and ultraviolet asymptotics22 860–878 (1979)
  2. M.V. Sadovskii “Electron localization in disordered systems: critical behavior and macroscopic manifestations24 96–115 (1981)
  3. I.V. Kukushkin, S.V. Meshkov, V.B. Timofeev “Two-dimensional electron density of states in a transverse magnetic field31 511–534 (1988)
  4. V.S. Dotsenko “Critical phenomena and quenched disorder38 457–496 (1995)
  5. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walks37 527–561 (1994)
  6. B.A. Volkov, L.I. Ryabova, D.R. Khokhlov “Mixed-valence impurities in lead telluride-based solid solutions45 819–846 (2002)
  7. Yu.I. Vorontsov “The phase of an oscillator in quantum theory. What is it ’in reality’?45 847–868 (2002)
  8. M.B. Menskii “Dissipation and decoherence in quantum systems46 1163–1182 (2003)
  9. M.B. Menskii “Concept of consciousness in the context of quantum mechanics48 389–409 (2005)
  10. M.I. Klinger “Low-temperature properties and localized electronic states of glasses30 699–715 (1987)
  11. G.N. Chuev “Statistical physics of the solvated electron42 149 (1999)
  12. I.M. Lifshitz “Energy spectrum structure and quantum states of disordered condensed systems7 549–573 (1965)
  13. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising model46 169–191 (2003)
  14. G.A. Martynov “The problem of phase transitions in statistical mechanics42 517–543 (1999)
  15. E.G. Maksimov, D.Yu. Savrasov, S.Yu. Savrasov “The electron-phonon interaction and the physical properties of metals40 337–358 (1997)
  16. M.F. Sarry “Analytical methods of calculating correlation functions in quantum statistical physics34 (11) 958–979 (1991)
  17. V.B. Braginskii, Yu.I. Vorontsov “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique18 644–650 (1975)
  18. E.L. Feinberg “On the ’special role’ of the electromagnetic potentials in quantum mechanics5 753–760 (1963)
  19. A.M. Dykhne, Yu.B. Rumer “Thermodynamics of a plane Ising-Onsager dipole lattice4 698–705 (1962)
  20. V.L. Ginzburg “Certain theoretical aspects of radiation due to superluminal motion in a Medium2 874–893 (1960)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions