Reviews of topical problems

Quantum field renormalization group in the theory of fully developed turbulence

 a,  a,  a, b, c
a Department of Theoretical Physics, Institute of Physics, St. Petersburg State University, ul. Ulyanovskaya 1, Petrodvorez, St. Petersburg, 198904, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Quantum field renormalisation group results of the theory of developed turbulence are reviewed. Background information about quantum field renormalisation theory, including operator expansion and the renormalisation of composite operators is given. As an example problem, the stochastic model of isotropic homogeneous turbulence is considered for which, using the renormalisation technique, the existence of infrared scaling with Kholmogorov dimensions is proved. The dimension of composite operators and the infrared asymptotic behaviour of various correlation functions are discussed, and numerical amplitude factors of scaling laws are calculated.

Fulltext is available at IOP
PACS: 03.40.Ge, 47.10.+g
DOI: 10.1070/PU1996v039n12ABEH000183
Citation: Adzhemyan L T, Antonov N V, Vasil’ev A N "Quantum field renormalization group in the theory of fully developed turbulence" Phys. Usp. 39 1193–1219 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Аджемян Л Ц, Антонов Н В, Васильев А Н «Квантово-полевая ренормализационная группа в теории развитой турбулентности» УФН 166 1257–1284 (1996); DOI: 10.3367/UFNr.0166.199612a.1257

References (122) Cited by (70) Similar articles (20) ↓

  1. N.M. Astaf’eva “Wavelet analysis: basic theory and some applications39 1085–1108 (1996)
  2. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)36 (11) 1020–1052 (1993)
  3. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  4. R.Kh. Zeytounian “The Benard-Marangoni thermocapillary-instability problem41 241–267 (1998)
  5. V.D. Buchel’nikov, A.N. Vasil’ev “Electromagnetic generation of ultrasound in ferromagnets35 (3) 192–211 (1992)
  6. A.N. Vasil’ev, V.D. Buchel’nikov et alShape memory ferromagnets46 559–588 (2003)
  7. V.F. Gantmakher, V.T. Dolgopolov “Localized-delocalized electron quantum phase transitions51 3–22 (2008)
  8. A.N. Vasil’ev, Yu.P. Gaidukov “Electromagnetic excitation of sound in metals26 952–973 (1983)
  9. M.M. Markina, P.S. Berdonosov et alFrancisites as new geometrically frustrated quasi-two-dimensional magnets64 344–356 (2021)
  10. Yu.A. Izyumov “Hubbard model of strong correlations38 385–408 (1995)
  11. T.I. Belova, A.E. Kudryavtsev “Solitons and their interactions in classical field theory40 359–386 (1997)
  12. K.L. Zarembo, Yu.M. Makeenko “An introduction to matrix superstring models41 1–23 (1998)
  13. G.N. Sarkisov “Approximate equations of the theory of liquids in the statistical thermodynamics of classical liquid systems42 545–561 (1999)
  14. V.A. Novikov “Nonperturbative QCD and supersymmetric QCD47 109–116 (2004)
  15. V.F. Gantmakher, V.T. Dolgopolov “Superconductor-insulator quantum phase transition53 1–49 (2010)
  16. K.P. Zybin, V.A. Sirota “Stretching vortex filaments model and the grounds of statistical theory of turbulence58 556–573 (2015)
  17. Yu.A. Izyumov “Strongly correlated electrons: the t-J model40 445–476 (1997)
  18. Yu.N. Proshin, N.Kh. Useinov “Magnetic breakdown with spin flip38 39–86 (1995)
  19. A.I. Morozov, V.V. Savel’ev “On Galateas — magnetic traps with plasma-embedded conductors41 1049–1089 (1998)
  20. V.S. Beskin “Radio pulsars42 1071 (1999)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions