Reviews of topical problems

Quantum field renormalization group in the theory of fully developed turbulence

 a,  a,  a, b, c
a Department of Theoretical Physics, Institute of Physics, St. Petersburg State University, ul. Ulyanovskaya 1, Petrodvorez, St. Petersburg, 198904, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Quantum field renormalisation group results of the theory of developed turbulence are reviewed. Background information about quantum field renormalisation theory, including operator expansion and the renormalisation of composite operators is given. As an example problem, the stochastic model of isotropic homogeneous turbulence is considered for which, using the renormalisation technique, the existence of infrared scaling with Kholmogorov dimensions is proved. The dimension of composite operators and the infrared asymptotic behaviour of various correlation functions are discussed, and numerical amplitude factors of scaling laws are calculated.

Fulltext is available at IOP
PACS: 03.40.Ge, 47.10.+g
DOI: 10.1070/PU1996v039n12ABEH000183
Citation: Adzhemyan L T, Antonov N V, Vasil’ev A N "Quantum field renormalization group in the theory of fully developed turbulence" Phys. Usp. 39 1193–1219 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS) MedlineRefWorks
PT Journal Article
TI Quantum field renormalization group in the theory of fully developed turbulence
AU Adzhemyan L T
FAU Adzhemyan LT
AU Antonov N V
FAU Antonov NV
AU Vasil’ev A N
FAU Vasil’ev AN
DP 10 Dec, 1996
TA Phys. Usp.
VI 39
IP 12
PG 1193-1219
RX 10.1070/PU1996v039n12ABEH000183
SO Phys. Usp. 1996 Dec 10;39(12):1193-1219

Оригинал: Аджемян Л Ц, Антонов Н В, Васильев А Н «Квантово-полевая ренормализационная группа в теории развитой турбулентности» УФН 166 1257–1284 (1996); DOI: 10.3367/UFNr.0166.199612a.1257

References (122) Cited by (70) Similar articles (20)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions