Issues

 / 

1995

 / 

August

  

Reviews of topical problems


Charged dislocations in semiconductor crystals

 a,  b
a Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation
b Institute of Problems of Microelectronic Technology, Russian Academy of Sciences, Moscow region, Chernogolovka, Russian Federation

The current status of the subject of charged dislocations in germanium and silicon semiconductor crystals is discussed. Equilibrium properties of plastically deformed germanium and silicon are described by a phenomenological model of the electron spectrum of charged dislocations in these crystals. This model is a development of the Shockley-Read theory and it postulates two acceptor levels, E1 and E2 and also one donor level, ε1. Moreover, it is necessary to introduce a finite capacity C1 of the acceptor level E1. The adopted model provides a self-consistent description of the main electrical properties of plastically deformed germanium and silicon. These properties include the conductivity of the crystals in the n and p states, details of inversion of the type of conduction caused by dislocations, some features of the current-voltage characteristics of crystals with oriented sets of dislocations, simplest relaxation phenomena, etc. In germanium, the level E1 is located near E1 approx 0,1 eV above the top of the valence band and its capacity is C1 lesssim 0.1. The corresponding parameters of silicon are E1 approx 0,4 eV and C1 lesssim 0.1. It is worth noting the smallness of the capacitiy C1, which justifies inclusion of this additional parameter among the characteristics of the electron spectrum of dislocations.

Fulltext pdf (922 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n08ABEH000099
PACS: 61.72.Lk, 71.55.Cn, 72.80.Cw (all)
DOI: 10.1070/PU1995v038n08ABEH000099
URL: https://ufn.ru/en/articles/1995/8/b/
A1995TF94900002
Citation: Shikin V B, Shikina Yu V "Charged dislocations in semiconductor crystals" Phys. Usp. 38 845–875 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шикин В Б, Шикина Ю В «Заряженные дислокации в полупроводниковых кристаллах» УФН 165 887–917 (1995); DOI: 10.3367/UFNr.0165.199508b.0887

References (66) Cited by (24) ↓ Similar articles (20)

  1. Gradoboev A V, Orlova K N et al Instrum Exp Tech 64 720 (2021)
  2. Velikhanov A R Physica B: Condensed Matter 621 413205 (2021)
  3. Syshchyk O, Hsu B et al Phys. Rev. Applied 14 (2) (2020)
  4. Kittler M, Reiche M et al Physica Status Solidi (a) 216 (17) (2019)
  5. Mandel A M, Oshurko V B, Pershin S M Quantum Electron. 49 505 (2019)
  6. Levchenko A, Mezhov-Deglin L et al 45 823 (2019)
  7. Sukach A V Optoelektron. Napìvprovìd. Teh. 53 60 (2018)
  8. Gestrin S G, Shchukina E V Russ Phys J 59 2143 (2017)
  9. Olikh Ya M, Tymochko M D Ukr. J. Phys. 61 381 (2016)
  10. Chikina I, Shikin V 41 465 (2015)
  11. Krasavin S E Semiconductors 46 598 (2012)
  12. Sukach A V Semicond. Phys. Quantum Electron. Optoelectron. 14 416 (2011)
  13. Shekoyan A V J. Contemp. Phys. 46 70 (2011)
  14. Hovakimian L B Appl. Phys. A 96 255 (2009)
  15. Shikin V B, Nazin S S et al Russ J Electrochem 43 667 (2007)
  16. Steinman E A, Tereshchenko A N, Abrosimov N V SSP 131-133 607 (2007)
  17. Smirnov Yu M, Kaplunov I A, Dolmatov A B Russ Phys J 48 460 (2005)
  18. Skvortsov A A, Gonchar L I, Orlov A M Phys. Solid State 45 1683 (2003)
  19. Meilikhov E Z, Farzetdinova R M Physica B: Condensed Matter 284-288 1908 (2000)
  20. Skvortsov A A, Orlov A M et al Phys. Solid State 42 2054 (2000)
  21. Skvortsov A A, Orlov A M et al Phys. Solid State 42 1861 (2000)
  22. Veliev Z A Semiconductors 33 1291 (1999)
  23. Shevchenko S A J. Exp. Theor. Phys. 88 66 (1999)
  24. Meilikhov E Z, Farzetdinova R M Physica E: Low-dimensional Systems And Nanostructures 3 190 (1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions