Issues

 / 

1995

 / 

February

  

Methodological notes


De Haas-van Alphen effect as a first-order electronic topological transition

 a,  b,  c
a Moscow State Institute of Steel and Alloys (Technology University), Leninskii prosp. 4, Moscow, 117936, Russian Federation
b Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
c Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 125009, Russian Federation

The de Haas-van Alphen effect and the behaviour of a superlattice in a quantising magnetic field can be described in terms of an electronic topological transition. Near the transition, the thermodynamic stability condition is shown to break down, thus eliminating the 11/2-order transition and giving rise to a first-order phase transition. The latter leads to the formation of diamagnetic Condon domains.

Fulltext pdf (324 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n02ABEH000072
PACS: 05.50.+q, 05.70.Fh, 75.10.Jm, 75.90.+w (all)
DOI: 10.1070/PU1995v038n02ABEH000072
URL: https://ufn.ru/en/articles/1995/2/f/
A1995QR33900006
Citation: Blanter Ya M, Kaganov M I, Posvyanskii D V "De Haas-van Alphen effect as a first-order electronic topological transition" Phys. Usp. 38 203–209 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Блантер Я М, Каганов М И, Посвянский Д В «Эффект де Гааза-ван Альфена — пример электронного топологического перехода первого рода» УФН 165 213–220 (1995); DOI: 10.3367/UFNr.0165.199502f.0213

References (13) Cited by (14) Similar articles (6) ↓

  1. V.A. Davydov, V.G. Morozov “Galilean transformations and evolution of autowave fronts in external fieldsPhys. Usp. 39 305–311 (1996)
  2. K.P. Belov “Pyromagnetic effect in ferrimagnets with a ’weak’ sublatticePhys. Usp. 43 407–413 (2000)
  3. V.V. Brazhkin, R.N. Voloshin et alPhase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2 oxidePhys. Usp. 46 1283–1289 (2003)
  4. V.B. Priezzhev “The dimer problem and the Kirchhoff theoremSov. Phys. Usp. 28 1125–1135 (1985)
  5. V.E. Antonov “A rule for a joint of three boundary lines in phase diagramsPhys. Usp. 56 395–400 (2013)
  6. Yu.Kh. Vekilov, O.M. Krasil’nikov et alElastic phase transitions in metals at high pressuresPhys. Usp. 57 897–902 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions