Issues

 / 

1995

 / 

February

  

Methodological notes


De Haas-van Alphen effect as a first-order electronic topological transition

 a,  b,  c
a Moscow State Institute of Steel and Alloys (Technology University), Leninskii prosp. 4, Moscow, 117936, Russian Federation
b Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
c Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 125009, Russian Federation

The de Haas-van Alphen effect and the behaviour of a superlattice in a quantising magnetic field can be described in terms of an electronic topological transition. Near the transition, the thermodynamic stability condition is shown to break down, thus eliminating the 11/2-order transition and giving rise to a first-order phase transition. The latter leads to the formation of diamagnetic Condon domains.

Fulltext pdf (324 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n02ABEH000072
PACS: 05.50.+q, 05.70.Fh, 75.10.Jm, 75.90.+w (all)
DOI: 10.1070/PU1995v038n02ABEH000072
URL: https://ufn.ru/en/articles/1995/2/f/
A1995QR33900006
Citation: Blanter Ya M, Kaganov M I, Posvyanskii D V "De Haas-van Alphen effect as a first-order electronic topological transition" Phys. Usp. 38 203–209 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Блантер Я М, Каганов М И, Посвянский Д В «Эффект де Гааза-ван Альфена — пример электронного топологического перехода первого рода» УФН 165 213–220 (1995); DOI: 10.3367/UFNr.0165.199502f.0213

References (13) Cited by (14) ↓ Similar articles (6)

  1. Pankratov S S, Zverev M V Jetp Lett. 97 163 (2013)
  2. Zimbovskaya N A Uspekhi Fizicheskikh Nauk 181 793 (2011)
  3. Egorov V S Uspekhi Fizicheskikh Nauk 180 785 (2010)
  4. Logoboy N, Joss W Solid State Communications 146 39 (2008)
  5. Zimbovskaya N A Jetp Lett. 83 217 (2006)
  6. Kramer R B G, Egorov V S et al Phys. Rev. Lett. 95 (18) (2005)
  7. Zimbovskaya N A Phys. Rev. B 71 (2) (2005)
  8. Zimbovskaya N A J. Phys.: Condens. Matter 17 6235 (2005)
  9. Solt G, Egorov V S Physica B: Condensed Matter 318 231 (2002)
  10. ZIMBOVSKAYA NATALIYA A, BIRMAN JOSEPH L Int. J. Mod. Phys. B 16 1767 (2002)
  11. Solt G, Egorov V S et al Phys. Rev. B 62 R11933 (2000)
  12. Solt G, Baines C et al Phys. Rev. B 59 6834 (1999)
  13. Barashev V P, Belov V V et al Russ Phys J 42 7 (1999)
  14. Barashev V P, Barashev V P i dr Teor. Mat. Fiz. 116 431 (1998) [Barashev V P, Belov V V et al Theor Math Phys 116 1074 (1998)]

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions