Issues

 / 

1994

 / 

February

  

Reviews of topical problems


Localised nontopological structures: construction of solutions and stability problems

 a,  b,  b
a Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, 141980, Russian Federation
b Department of Experimental Physics, Peoples’ Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation

Possible methods are discussed for describing structures localised in finite region (solitons, vortices, defects and so on) within the framework of both integrable and nonintegrable field models. For integrable models a universal algorithm for the construction of soliton-like solutions is described and discussed in detail. This algorithm can be generalised to many-dimensional cases and its efficacy for several examples exceeds that of the standard inverse scattering transform method. For nonintegrable models we focus mainly on methods of studying the stability of soliton-like solutions, since stability problems become essential when one turns to a description of many-dimensional solitons. Special attention is paid to those stable localised structures that are not endowed with topological invariants, since for topologically nontrivial structures there exist effective methods of stability analysis, based on energy estimates. Here the principal topic is that of Lyapunov’s direct method as applied to distributed systems are discussed. Effective stability criteria for stationary solitons, endowed with one or more charges, (the Q-theorem) are derived. Several examples are presented that illustrate the applicability of the method of functional estimates, and the stability of plasma solitons of the electron phase hole type is discussed.

Fulltext pdf (701 KB)
Fulltext is also available at DOI: 10.1070/PU1994v037n02ABEH000006
DOI: 10.1070/PU1994v037n02ABEH000006
URL: https://ufn.ru/en/articles/1994/2/a/
A1994NB28300001
Citation: Makhan’kov V G, Rybakov Yu P, Sanyuk V I "Localised nontopological structures: construction of solutions and stability problems" Phys. Usp. 37 113–137 (1994)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ìàõàíüêîâ Â Ã, Ðûáàêîâ Þ Ï, Ñàíþê Â È «Ëîêàëèçîâàííûå íåòîïîëîãè÷åñêèå ñòðóêòóðû: ïîñòðîåíèå ðåøåíèé è ïðîáëåìû óñòîé÷èâîñòè» ÓÔÍ 164 121–148 (1994); DOI: 10.3367/UFNr.0164.199402a.0121

References (83) Cited by (24) Similar articles (20) ↓

  1. V.G. Makhan’kov, Yu.P. Rybakov, V.I. Sanyuk “The Skyrme model and strong interactions (On the 30th anniversary of the creation of the Skyrme model)Sov. Phys. Usp. 35 (2) 55–84 (1992)
  2. V.E. Zakharov, E.A. Kuznetsov “Solitons and collapses: two evolution scenarios of nonlinear wave systemsPhys. Usp. 55 535–556 (2012)
  3. V.A. Belyakov, V.E. Dmitrienko “The blue phase of liquid crystalsSov. Phys. Usp. 28 535–562 (1985)
  4. N.A. Veretenov, N.N. Rosanov, S.V. Fedorov “Laser solitons: topological and quantum phenomenaPhys. Usp. 65 131–162 (2022)
  5. L.M. Blinov, L.A. Beresnev “Ferroelectric liquid crystalsSov. Phys. Usp. 27 492–514 (1984)
  6. A.I. Frank “Modern optics of long-wavelength neutronsSov. Phys. Usp. 34 (11) 980–987 (1991)
  7. A.G. Lundin, V.E. Zorin “Nuclear magnetic resonance in condensed matterPhys. Usp. 50 1053–1077 (2007)
  8. V.E. Zakharov, E.A. Kuznetsov “Hamiltonian formalism for nonlinear wavesPhys. Usp. 40 1087–1116 (1997)
  9. V.F. Kop’ev, S.A. Chernyshev “Vortex ring oscillations, the development of turbulence in vortex rings and generation of soundPhys. Usp. 43 663–690 (2000)
  10. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical propertiesPhys. Usp. 54 227–258 (2011)
  11. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structuresPhys. Usp. 38 935–964 (1995)
  12. Yu.M. Romanovskii, V.A. Teplov “The physical bases of cell movement. The mechanisms of self-organisation of amoeboid motilityPhys. Usp. 38 521–542 (1995)
  13. N.M. Kuznetsov “Stability of shock wavesSov. Phys. Usp. 32 993–1012 (1989)
  14. B.M. Barbashov, V.V. Nesterenko “Superstrings: a new approach to a unified theory of fundamental interactionsSov. Phys. Usp. 29 1077–1096 (1986)
  15. M.V. Koval’chuk, V.G. Kohn “X-ray standing waves—a new method of studying the structure of crystalsSov. Phys. Usp. 29 426–446 (1986)
  16. L.M. Kovrizhnykh, S.V. Shchepetov “Present state of the theory of the MHD equilibrium and stability of stellarator plasmasSov. Phys. Usp. 29 343–363 (1986)
  17. S.G. Tikhodeev “The electron-hole liquid in a semiconductorSov. Phys. Usp. 28 1–30 (1985)
  18. A.S. Davydov “Solitons in quasi-one-dimensional molecular structuresSov. Phys. Usp. 25 898–918 (1982)
  19. M.K. Gailitis “The strong-coupling method in the theory of electron-atom collisionsSov. Phys. Usp. 18 600–611 (1975)
  20. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materialsPhys. Usp. 57 970–989 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions