Issues

 / 

1994

 / 

February

  

Reviews of topical problems


Localised nontopological structures: construction of solutions and stability problems

 a,  b,  b
a Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, 141980, Russian Federation
b Department of Experimental Physics, Peoples’ Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation

Possible methods are discussed for describing structures localised in finite region (solitons, vortices, defects and so on) within the framework of both integrable and nonintegrable field models. For integrable models a universal algorithm for the construction of soliton-like solutions is described and discussed in detail. This algorithm can be generalised to many-dimensional cases and its efficacy for several examples exceeds that of the standard inverse scattering transform method. For nonintegrable models we focus mainly on methods of studying the stability of soliton-like solutions, since stability problems become essential when one turns to a description of many-dimensional solitons. Special attention is paid to those stable localised structures that are not endowed with topological invariants, since for topologically nontrivial structures there exist effective methods of stability analysis, based on energy estimates. Here the principal topic is that of Lyapunov’s direct method as applied to distributed systems are discussed. Effective stability criteria for stationary solitons, endowed with one or more charges, (the Q-theorem) are derived. Several examples are presented that illustrate the applicability of the method of functional estimates, and the stability of plasma solitons of the electron phase hole type is discussed.

Fulltext pdf (701 KB)
Fulltext is also available at DOI: 10.1070/PU1994v037n02ABEH000006
DOI: 10.1070/PU1994v037n02ABEH000006
URL: https://ufn.ru/en/articles/1994/2/a/
A1994NB28300001
Citation: Makhan’kov V G, Rybakov Yu P, Sanyuk V I "Localised nontopological structures: construction of solutions and stability problems" Phys. Usp. 37 113–137 (1994)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Маханьков В Г, Рыбаков Ю П, Санюк В И «Локализованные нетопологические структуры: построение решений и проблемы устойчивости» УФН 164 121–148 (1994); DOI: 10.3367/UFNr.0164.199402a.0121

References (83) Cited by (24) ↓ Similar articles (20)

  1. Buller A S, Litvinov R V Jetp Lett. 120 164 (2024)
  2. Zelenetskaya Yu V, Litvinov R V et al Bull. Lebedev Phys. Inst. 49 S82 (2022)
  3. Panin A  G, Smolyakov M  N Phys. Rev. D 95 (6) (2017)
  4. Gadzhimuradov T A, Abdullaev G O, Agalarov A M Nonlinear Dyn 89 2695 (2017)
  5. Mallory K, Van Gorder R A Phys. Rev. E 92 (1) (2015)
  6. Agalarov A, Zhulego V, Gadzhimuradov T Phys. Rev. E 91 (4) (2015)
  7. Van Gorder R A J. Phys. Soc. Jpn. 83 054005 (2014)
  8. A V G R J. Phys. Soc. Jpn. 82 094005 (2013)
  9. A V G R J. Phys. Soc. Jpn. 82 064005 (2013)
  10. Kochetkov S M, Barkovsky L M J Appl Spectrosc 76 377 (2009)
  11. Gutshabash E Sh J Math Sci 136 3580 (2006)
  12. Bogdanov A N, Rößler U K, Shestakov A A Phys. Rev. E 67 (1) (2003)
  13. Kivshar Yu S, Agrawal G P, Agrawal G P Optical Solitons (2003) p. 31
  14. Skryabin D V J. Opt. Soc. Am. B 19 529 (2002)
  15. Kivshar Yu S, Sukhorukov A A Springer Series In Optical Sciences Vol. Spatial SolitonsStability of Spatial Optical Solitons82 Chapter 8 (2001) p. 211
  16. Voronkov S V, Sazonov S V J. Exp. Theor. Phys. 93 236 (2001)
  17. Pelinovsky D E, Kivshar Yu S Phys. Rev. E 62 8668 (2000)
  18. V S D Physica D: Nonlinear Phenomena 139 186 (2000)
  19. Ostrovskaya E A, Kivshar Yu S et al Phys. Rev. Lett. 83 296 (1999)
  20. Skryabin D V Nonlinear Guided Waves and Their Applications, (1999) p. ThD11
  21. Skryabin D V Phys. Rev. E 60 R3508 (1999)
  22. Skryabin D V, Firth W J Phys. Rev. Lett. 81 3379 (1998)
  23. Bogdanov A N, Shestakov A A J. Exp. Theor. Phys. 86 911 (1998)
  24. Bogdanov A Jetp Lett. 68 317 (1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions