Issues

 / 

1992

 / 

July

  

Methodological notes


Is probability a ’normal’ physical quantity?

,  a
a Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

The informal aspects, arising in the interpretation of physical experiments, of the theory of probability and mathematical statistics are discussed. The conditions that verifying experiments must satisfy are presented and the role of heuristic (extralogical) assertions is analyzed using the example of mathematical expectation. The principal hypotheses implicit in experiments are enumerated: the principle of reproducibility (``the past will be repeated in the future''); the principle of reasonable sufficiency; and, the statistical principle (``better to predict something rather than nothing''). Considerable attention is devoted to Fisher and multisample confidence intervals. It is noted that Fisher confidence intervals are inconsistent. The arguments for introducing contrivances into practical calculations of probabilities are enumerated: incompleteness of any system of hypotheses; subjective estimates of probabilities; adjoining of statistical ensembles; nonstationariness and instability; rare phenomena; and, the use of classical probabilities and the law of large numbers. It is concluded that the relative frequency of appearance (empirical probability) is a ``normal'' physical quantity in the sense that it admits physical measurement. Its ``abnormality'' is manifested in the fact that it is burdened, more than other physical quantities, with conventions and hypotheses which must be specially checked (verified).

Fulltext pdf (1000 KB)
Fulltext is also available at DOI: 10.1070/PU1992v035n07ABEH002250
PACS: 02.50.Cw, 06.20.Dk, 05.20.Gg, 02.70.Rr (all)
DOI: 10.1070/PU1992v035n07ABEH002250
URL: https://ufn.ru/en/articles/1992/7/d/
Citation: Alimov Yu I, Kravtsov Yu A "Is probability a 'normal' physical quantity?" Sov. Phys. Usp. 35 (7) 606–622 (1992)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Алимов Ю И, Кравцов Ю А «Является ли вероятность „нормальной“ физической величиной?» УФН 162 (7) 149–182 (1992); DOI: 10.3367/UFNr.0162.199207d.0149

References (38) Cited by (12) Similar articles (16) ↓

  1. V.N. Tutubalin “Probability, computers, and the processing of experimental dataPhys. Usp. 36 (7) 628–641 (1993)
  2. G. Oppen “Objects and environmentPhys. Usp. 39 617–622 (1996)
  3. V.I. Klyatskin, A.I. Saichev “Statistical and dynamic localization of plane waves in randomly layered mediaSov. Phys. Usp. 35 (3) 231–247 (1992)
  4. L.A. Apresyan, Yu.A. Kravtsov “Photometry and coherence: wave aspects of the theory of radiation transportSov. Phys. Usp. 27 301–313 (1984)
  5. E.V. Shuryak “Stochastic trajectory generation by computerSov. Phys. Usp. 27 448–453 (1984)
  6. V.S. Pronskikh “Measurement problems: contemporary discussions and modelsPhys. Usp. 63 192–200 (2020)
  7. B.M. Bolotovskii, A.V. Serov “Special features of motion of particles in an electromagnetic wavePhys. Usp. 46 645–655 (2003)
  8. P. Paradoksov “How quantum mechanics helps us understand classical mechanicsSov. Phys. Usp. 9 618–620 (1967)
  9. Yu.A. Kravtsov, A.I. Saichev “Effects of double passage of waves in randomly inhomogeneous mediaSov. Phys. Usp. 25 494–508 (1982)
  10. A.V. Belinskii “Bell’s paradoxes without the introduction of hidden variablesPhys. Usp. 37 413–419 (1994)
  11. A.Yu. Andreev, D.A. Kirzhnits “Tachyons and the instability of physical systemsPhys. Usp. 39 1071–1076 (1996)
  12. L.A. Rivlin “Photons in a waveguide (some thought experiments)Phys. Usp. 40 291–303 (1997)
  13. A.V. Belinskii “Bell’s theorem for trichotomic observablesPhys. Usp. 40 305–316 (1997)
  14. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and applicationPhys. Usp. 53 91–98 (2010)
  15. K.Yu. Todyshev “Measuring the inclusive cross section of e+e annihilation into hadrons in the pre-asymptotic energy rangePhys. Usp. 63 929–939 (2020)
  16. I.M. Arbekov, S.N. Molotkov “Quantum random number generators, extraction of provably random bit sequences from Markov chain trajectoriesPhys. Usp. 67 919–937 (2024)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions