Выпуски

 / 

2024

 / 

Январь

  

Обзоры актуальных проблем


Оптико-терагерцевые преобразователи: современное состояние и новые возможности для мультиспектральной визуализации

  а, б, в,  а,  а, б,  а, в,  б,  б,  г,  г,  б
а Институт сверхвысокочастотной полупроводниковой электроники им. В. Г. Мокерова Российской академии наук, Нагорный проезд, 7, стр. 5, Москва, 117105, Российская Федерация
б Институт общей физики им. А.М. Прохорова Российской академии наук, ул. Вавилова 38, Москва, 119991, Российская Федерация
в Московский физико-технический институт (Национальный исследовательский университет), Институтский пер. 9, Долгопрудный, Московская обл., 141701, Российская Федерация
г Институт физики твердого тела имени Ю.А. Осипьяна РАН, ул. Академика Осипьяна 2, Черноголовка, Московская обл., 142432, Российская Федерация

Компактные и недорогие спектрометры и системы визуализации в терагерцевом (ТГц) диапазоне частот на основе оптико-ТГц фотопроводящих преобразователей ультракоротких лазерных импульсов (фотопроводящих антенн — ФПА) активно развиваются и находят широкое применение в решении фундаментальных и прикладных проблем в самых разных областях науки и техники. Высокая активность исследований и разработок в данном направлении связана с надёжностью ФПА, малыми габаритами, лёгкой масштабируемостью единичного элемента до одномерного и двумерного массива, возможностью без охлаждения обеспечить широкий спектральный диапазон и высокий динамический диапазон регистрируемых ТГц-сигналов. В последнее время особый интерес представляют системы многопиксельного детектирования ТГц-излучения на основе матричных ФПА-детекторов, призванные многократно повысить скорость построения ТГц-изображения. В настоящем обзоре приведены последние тенденции в области развития ТГц- элементной базы на основе ФПА, методов ТГц-импульсной спектроскопии и визуализации на базе ФПА, а также альтернативных подходов к регистрации ТГц-импульсов и построения ТГц-изображений.

Текст pdf (4,8 Мб)
English fulltext is available at DOI: 10.3367/UFNe.2023.07.039503
Ключевые слова: терагерцевое излучение, источники и детекторы терагерцевых импульсов, полупроводники, терагерцевая визуализация, импульсная терагерцевая спектроскопия, фотопроводящая антенна, низкотемпературный GaAs, сверхрешёточные гетероструктуры InAlAs/InGaAs, генерация ультракоротких импульсов, ближнепольная терагерцевая микроскопия, микроскопия на основе эффекта твердотельной иммерсии, терагерцевая томография, мультиспектральная терагерцевая визуализация
PACS: 07.57.−c, 42.30.Wb, 84.40.−x (все)
DOI: 10.3367/UFNr.2023.07.039503
URL: https://ufn.ru/ru/articles/2024/1/b/
001198734600008
2-s2.0-85186120263
2024PhyU...67....3P
Цитата: Пономарёв Д С, Ячменев А Э, Лаврухин Д В, Хабибуллин Р А, Черномырдин Н В, Спектор И Е, Курлов В Н, Кведер В В, Зайцев К И "Оптико-терагерцевые преобразователи: современное состояние и новые возможности для мультиспектральной визуализации" УФН 194 2–22 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 24 ноября 2022, доработана: 4 июля 2023, 5 июля 2023

English citation: Ponomarev D S, Yachmenev A E, Lavrukhin D V, Khabibullin R A, Chernomyrdin N V, Spektor I E, Kurlov V N, Kveder V V, Zaytsev K I “Optical-to-terahertz switches: state of the art and new opportunities for multispectral imagingPhys. Usp. 67 3–21 (2024); DOI: 10.3367/UFNe.2023.07.039503

Список литературы (287) Статьи, ссылающиеся на эту (4) Похожие статьи (20) ↓

  1. Д.В. Казанцев, Е.В. Кузнецов и др. «Безапертурная микроскопия ближнего оптического поля» УФН 187 277–295 (2017)
  2. В.Ф. Кравченко, А.А. Кураев, А.К. Синицын «Несинхронные взаимодействия» УФН 177 511–534 (2007)
  3. А.А. Глаголева-Аркадьева «Новая шкала электромагнитных волн» УФН 6 216–241 (1926)
  4. К.П. Зыбин, В.А. Сирота «Модель вытягивающихся вихрей и обоснование статистических свойств турбулентности» УФН 185 593–612 (2015)
  5. М.А. Ремнев, В.В. Климов «Метаповерхности: новый взгляд на уравнения Максвелла и новые методы управления светом» УФН 188 169–205 (2018)
  6. В.И. Балыкин, П.Н. Мелентьев «Оптика и спектроскопия единичной плазмонной наноструктуры» УФН 188 143–168 (2018)
  7. Г.Р. Иваницкий, А.А. Деев, Е.П. Хижняк «Может ли существовать долговременная структурно-динамическая память воды?» УФН 184 43–74 (2014)
  8. Г.А. Месяц, М.И. Яландин «Пикосекундная электроника больших мощностей» УФН 175 225–246 (2005)
  9. И.С. Клименко, Г.В. Скроцкий «Голография сфокусированных изображений» УФН 109 269–292 (1973)
  10. В.Ю. Зайцев «Оптическая когерентная томография в эластографии и ангиографии» УФН 193 845–871 (2023)
  11. Б.В. Соколенко, Н.В. Шостка, О.С. Каракчиева «Оптические ловушки и манипуляторы. Современные концепции и дальнейшие перспективы» УФН 192 867–892 (2022)
  12. А.А. Лебедев, П.А. Иванов и др. «Электроника на основе SiC (к 100-летию Физико-технического института им. А.Ф. Иоффе РАН)» УФН 189 803–848 (2019)
  13. С.И. Лепешов, А.Е. Краснок и др. «Гибридная нанофотоника» УФН 188 1137–1154 (2018)
  14. И.А. Дерюгин, В.Н. Курашов и др. «Поляризационные эффекты в голографии» УФН 108 733–747 (1972)
  15. В.В. Аристов, В.Ш. Шехтман «Свойства трехмерных голограмм» УФН 104 51–76 (1971)
  16. Б.З. Каценеленбаум «Квазиоптические методы формирования и передачи миллиметровых волн» УФН 83 81–105 (1964)
  17. А.П. Порфирьев, А.А. Кучмижак и др. «Фазовые сингулярности и оптические вихри в фотонике» УФН 192 841–866 (2022)
  18. К.В. Рейх «Электропроводность массива квантовых точек» УФН 190 1062–1084 (2020)
  19. М.В. Рыбин, М.Ф. Лимонов «Резонансные эффекты в фотонных кристаллах и метаматериалах (к 100-летию Физико-технического института им. А.Ф. Иоффе РАН)» УФН 189 881–898 (2019)
  20. Р.С. Берри, Б.М. Смирнов «Моделирование конфигурационных переходов в атомных системах» УФН 183 1029–1057 (2013)

Список формируется автоматически.

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение