Issues

 / 

2026

 / 

January

  

Reviews of topical problems


Thermopower in HgTe-based topological insulators and two-dimensional semimetals

  a,   b, c, §  a, *  b, d, #  b
a Universidade de São Paulo, Instituto de Física, São Paulo, Brazil
b Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
d Novosibirsk State Technical University, pr. K. Marksa 20, Novosibirsk, 630092, Russian Federation

In recent years, there has been a significant effort to investigate the impact of nontrivial electronic topology on the thermoelectric properties of materials. Topological insulators (TIs) and two-dimensional semimetals, in particular, have emerged as an efficient class of thermoelectric materials. When the Fermi level lies within the insulating gap, thermoelectric transport in two-dimensional (2D) topological insulators is primarily determined by the one-dimensional helical states, while in three-dimensional TIs, the transport is driven by the 2D states that exist on the material's surfaces. Here, we review existing results on HgTe quantum wells, which are exemplary in combining the optimal features of topological insulators and the best-performing thermoelectric materials. In addition, we also cover thermoelectric phenomena in two-dimensional semimetals. These materials have overlapping electron and hole bands in the energy space, resulting in a strong mutual friction between them that affects thermoelectric transport and leads to temperature-dependent resistivity. Our review focuses on the thermopower phenomena observed in HgTe-based semimetals, taking into account diffusive and phonon drag effects. Furthermore, we also discuss Weyl two-dimensional semimetals with gapless cone spectra and their thermoelectric properties. We highlight the impact of the coexistence of Dirac and heavy holes in the valence band on the thermoelectric properties of the material and their potential for application in thermoelectric devices.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: topological insulators, thermopower, quantum transport, HgTe quantum wells
PACS: 72.15.Jf, 72.20.Pa, 85.35.Be (all)
DOI: 10.3367/UFNe.2025.04.039898
URL: https://ufn.ru/en/articles/2026/1/b/
Citation: Gusev G M, Kvon Z D, Levin A D, Olshanetsky E B, Mikhailov N N "Thermopower in HgTe-based topological insulators and two-dimensional semimetals" Phys. Usp. 69 (1) (2026)

Received: 14th, February 2025, revised: 2nd, April 2025, 9th, April 2025

Оригинал: Гусев Г М, Квон З Д, Левин А Д, Ольшанецкий Е Б, Михайлов Н Н «ТермоЭДС в топологических изоляторах и двумерных полуметаллах на основе HgTe» УФН 196 2–27 (2026); DOI: 10.3367/UFNr.2025.04.039898

Similar articles (16) ↓

  1. Z.D. Kvon, D.A. Kozlov et alTopological insulators based on HgTePhys. Usp. 63 629–647 (2020)
  2. A.V. Dmitriev, I.P. Zvyagin “Current trends in the physics of thermoelectric materialsPhys. Usp. 53 789–803 (2010)
  3. K.V. Larionov, P.B. Sorokin “Investigation of atomically thin films: state of the artPhys. Usp. 64 28–47 (2021)
  4. A.V. Galeeva, A.S. Kazakov, D.R. Khokhlov “Terahertz probing of topological insulators: photoelectric effectsPhys. Usp. 67 988–999 (2024)
  5. N.N. Berchenko, M.V. Pashkovskii “Mercury telluride—a zero-gap semiconductorSov. Phys. Usp. 19 462–480 (1976)
  6. I.D. Morokhov, V.I. Petinov et alStructure and properties of fine metallic particlesSov. Phys. Usp. 24 295–317 (1981)
  7. A.P. Protogenov “Anyon superconductivity in strongly-correlated spin systemsSov. Phys. Usp. 35 (7) 535–571 (1992)
  8. S.G. Ovchinnikov “Application of synchrotron radiation to the study of magnetic materialsPhys. Usp. 42 779–796 (1999)
  9. G.A. Malygin “Strength and plasticity of nanocrystalline materials and nanosized crystalsPhys. Usp. 54 1091–1116 (2011)
  10. A.P. Pyatakov, A.K. Zvezdin “Magnetoelectric and multiferroic mediaPhys. Usp. 55 557–581 (2012)
  11. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructuresPhys. Usp. 56 105–122 (2013)
  12. S.I. Vedeneev “Quantum oscillations in three-dimensional topological insulatorsPhys. Usp. 60 385–401 (2017)
  13. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applicationsPhys. Usp. 61 2–28 (2018)
  14. V.N. Dolgunin, A.N. Kudi, M.A. Tuev “Mechanisms and kinetics of gravity separation of granular materialsPhys. Usp. 63 545–561 (2020)
  15. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applicationsPhys. Usp. 65 567–596 (2022)
  16. B.A. Klumov “Universal structural properties of three-dimensional and two-dimensional meltsPhys. Usp. 66 288–311 (2023)

The list is formed automatically.

© 1918–2026 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions