Issues

 / 

2025

 / 

September

  

Methodological notes


On the problem of thermodynamic fluctuations in computer simulations

  a,  b,  a,  a
a Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Institute for Nuclear Research, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya 7a, Moscow, 117312, Russian Federation

We discuss two approaches to studying thermodynamic fluctuations in computer simulations. The first is based on the theory presented in Landau and Lifshitz's textbook, which assumes a self-consistent solution to the problem, and the second, developed by Lebowitz—Percus—Verlet, et al., is suitable for a limited class of computer simulations based on the classical method of molecular dynamics. The study of fluctuations in a molecular dynamics simulation of helium fluid at room temperature and a pressure of 2 kbar reveals that they differ by several times depending on the type of ensemble (NVE or NVT) used in the computations. For the NVT ensemble, the best result is given by the Landau—Lifshitz approach, and for the microcanonical NVE ensemble, by the Lebowitz—Percus—Verlet approach. At the same time, the NVT ensemble in this system is shown to have a distribution density of temperature fluctuations different from the normal one. This difference is associated with the presence of so-called algorithmic fluctuations caused by the computer implementation of the calculation algorithm: discreteness of time, limited computation time, etc. The fundamental possibility of reconciling the weakly conservative laws of particle motion, where energy is conserved on average, with the manifest asymmetry of the time evolution of the system as a whole is demonstrated.

Fulltext pdf (623 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.05.039902
Keywords: thermodynamic fluctuations, molecular dynamics, bulk moduli, specific heat
PACS: 02.70.Ns, 05.40.−a, 05.70.−a (all)
DOI: 10.3367/UFNe.2025.05.039902
URL: https://ufn.ru/en/articles/2025/9/e/
Citation: Kondrin M V, Lebed’ Yu B, Fomin Yu D, Brazhkin V V "On the problem of thermodynamic fluctuations in computer simulations" Phys. Usp. 68 941–946 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, December 2024, revised: 11th, April 2025, 13th, May 2025

Оригинал: Кондрин М В, Лебедь Ю Б, Фомин Ю Д, Бражкин В В «К вопросу о термодинамических флуктуациях в компьютерных экспериментах» УФН 195 1001–1007 (2025); DOI: 10.3367/UFNr.2025.05.039902

References (26) Cited by (1) Similar articles (20) ↓

  1. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  2. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  3. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  4. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  5. V.V. Brazhkin “Can glassforming liquids be 'simple'?Phys. Usp. 62 623–629 (2019)
  6. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  7. V.V. Popkov, E.V. Shipitsyn “Golden section in the Carnot cyclePhys. Usp. 43 1155–1157 (2000)
  8. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  9. Yu.L. Klimontovich “Fluctuation-dissipation relations. Role of the finiteness of the correlation time. Quantum generalization of Nyquist’s formulaSov. Phys. Usp. 30 154–167 (1987)
  10. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  11. I.P. Bazarov “Paradoxes of gas mixingSov. Phys. Usp. 19 271–273 (1976)
  12. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motorsPhys. Usp. 67 1046–1055 (2024)
  13. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  14. V.V. Brazhkin “'Quantum' values of the extrema of 'classical' macroscopic quantitiesPhys. Usp. 66 1154–1163 (2023)
  15. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  16. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  17. A.V. Burenin “Qualitative intramolecular quantum dynamicsPhys. Usp. 42 591–602 (1999)
  18. V.K. Konyukhov, A.M. Prokhorov “Second law of thermodynamics and thermally excited quantum oscillatorsSov. Phys. Usp. 19 618–623 (1976)
  19. D.E. Smylie, V.V. Brazhkin, A. Palmer “Reply to comment by V N Zharkov “On estimating the molecular viscosity of the Earth’s outer core”Phys. Usp. 52 96–96 (2009)
  20. V.V. Brazhkin “Interparticle interaction in condensed media: some elements are ’more equal than others’Phys. Usp. 52 369–376 (2009)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions