Issues

 / 

2025

 / 

September

  

Methodological notes


On the problem of thermodynamic fluctuations in computer simulations

  a,  b,  a,  a
a Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Institute for Nuclear Research, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya 7a, Moscow, 117312, Russian Federation

We discuss two approaches to studying thermodynamic fluctuations in computer simulations. The first is based on the theory presented in Landau and Lifshitz's textbook, which assumes a self-consistent solution to the problem, and the second, developed by Lebowitz—Percus—Verlet, et al., is suitable for a limited class of computer simulations based on the classical method of molecular dynamics. The study of fluctuations in a molecular dynamics simulation of helium fluid at room temperature and a pressure of 2 kbar reveals that they differ by several times depending on the type of ensemble (NVE or NVT) used in the computations. For the NVT ensemble, the best result is given by the Landau—Lifshitz approach, and for the microcanonical NVE ensemble, by the Lebowitz—Percus—Verlet approach. At the same time, the NVT ensemble in this system is shown to have a distribution density of temperature fluctuations different from the normal one. This difference is associated with the presence of so-called algorithmic fluctuations caused by the computer implementation of the calculation algorithm: discreteness of time, limited computation time, etc. The fundamental possibility of reconciling the weakly conservative laws of particle motion, where energy is conserved on average, with the manifest asymmetry of the time evolution of the system as a whole is demonstrated.

Fulltext pdf (623 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.05.039902
Keywords: thermodynamic fluctuations, molecular dynamics, bulk moduli, specific heat
PACS: 02.70.Ns, 05.40.−a, 05.70.−a (all)
DOI: 10.3367/UFNe.2025.05.039902
URL: https://ufn.ru/en/articles/2025/9/e/
Citation: Kondrin M V, Lebed’ Yu B, Fomin Yu D, Brazhkin V V "On the problem of thermodynamic fluctuations in computer simulations" Phys. Usp. 68 941–946 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, December 2024, revised: 11th, April 2025, 13th, May 2025

Оригинал: Кондрин М В, Лебедь Ю Б, Фомин Ю Д, Бражкин В В «К вопросу о термодинамических флуктуациях в компьютерных экспериментах» УФН 195 1001–1007 (2025); DOI: 10.3367/UFNr.2025.05.039902

References (26) ↓ Cited by (1) Similar articles (20)

  1. Landau L D, Pitaevskii L P, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980); Translated from Russian, Landau L D, Pitaevskii L P, Lifshitz E M Statisticheskaya Fizika Vol. 1 (Moscow: Nauka, 1976)
  2. Hickman J, Mishin Y Phys. Rev. B 94 184311 (2016)
  3. Kittel C Am. J. Phys. 41 1211 (1973)
  4. Kittel C Phys. Today 41 (5) 93 (1988)
  5. Mandelbrot B B Phys. Today 42 (1) 71 (1989)
  6. Tsiok E N et al Soft Matter 16 3962 (2020)
  7. Frenkel D, Smit B Understanding Molecular Simulation: From Algorithms To Applications 2nd ed. (San Diego: Academic Press, 2002)
  8. Bystryi R G et al High Temp. 52 475 (2014); Bystryi R G et al Teplofiz. Vys. Temp. 52 494 (2014)
  9. Kondrin M V, Lebed Yu B arXiv:2312.13775; Kondrin M V, Lebed Yu B Nanosystems Phys. Chem. Math. 16 (4) 407 (2025)
  10. Lebowitz J L, Percus J K, Verlet L Phys. Rev. 153 250 (1967)
  11. Ray J R, Graben H W Mol. Phys. 43 1293 (1981)
  12. Kubo R Rep. Prog. Phys. 29 255 (1966)
  13. Gibbs J W Elementary Principles In Statistical Mechanics (New York: C. Scribner’s Sons, 1902)
  14. Einstein A Ann. Physik 338 1275 (1910)
  15. Rudoi Yu G, Sukhanov A D Phys. Usp. 43 1169 (2000); Rudoi Yu G, Sukhanov A D Usp. Fiz. Nauk 170 1265 (2000)
  16. Sukhanov A D, Rudoi Yu G Phys. Usp. 49 531 (2006); Sukhanov A D, Rudoi Yu G Usp. Fiz. Nauk 176 551 (2006)
  17. "Thermal fluctuations", Wikipedia, https://en.wikipedia.org/wiki/Thermal_fluctuations
  18. Norman G E, Stegailov V V Math. Models Comput. Simul. 5 305 (2013); Norman G E, Stegailov V V Matem. Model. 24 (6) 3 (2012)
  19. Lankin A V, Norman G E Novosti, Osnovaniya I Problemy Kvantovoi Mekhaniki. Neokopengagenskaya Paradigma (News, Foundations And Problems Of Quantum Mechanics. Neo-Copenhagen Paradigm) (Moscow: Fizmatlit, 2023)
  20. Fomin Yu D et al Phys. Scr. 100 075914 (2025)
  21. Plimpton S J. Comput. Phys. 117 1 (1995)
  22. Plimpton S et al LAMMPS Stable release 29 September 2021 (2021)
  23. Mishin Y Ann. Physics 363 48 (2015)
  24. The R Core Team "R: A language and environment for statistical computing" (2012), ISBN 3-900051-07-0
  25. Wang L et al Sci. Rep. 9 755 (2019)
  26. Suslov I M arXiv:2407.03371

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions