Issues

 / 

2025

 / 

August

  

Methodological notes


Interaction energy of point electric multipoles

 a,   a,  b,  a
a Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660041, Russian Federation
b M. F. Reshetnev Siberian State University of Science and Technologies, Krasnoyarsky Rabochy Av. 31, Krasnoyarsk, 660014, Russian Federation

Based on various representations of the potential of point basis sources of an electrostatic field, we report the solution to the problem of their interaction energy. The obtained results can be used to approximate the electric field by point multipole fields using the variational principle.

Fulltext pdf (187 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.12.039830
Keywords: point multipole, interaction energy, variational principle
PACS: 03.50.De, 04.20.Fy, 41.20.Cv (all)
DOI: 10.3367/UFNe.2024.12.039830
URL: https://ufn.ru/en/articles/2025/8/g/
2-s2.0-105016802165
2025PhyU...68..843K
Citation: Kazantsev V P, Zolotov O A, Zolotova O P, Zalizniak V E "Interaction energy of point electric multipoles" Phys. Usp. 68 843–849 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, July 2024, revised: 11th, December 2024, 29th, December 2024

Оригинал: Казанцев В П, Золотов О А, Золотова О П, Зализняк В Е «Точечные электрические мультиполи и энергии их взаимодействия» УФН 195 897–904 (2025); DOI: 10.3367/UFNr.2024.12.039830

References (12) Similar articles (20) ↓

  1. V.P. Kazantsev “An example illustrating the potentiality and peculiarities of a variational approach to electrostatic problemsPhys. Usp. 45 325–330 (2002)
  2. G.N. Gaidukov, I.N. Gorbatyy “Electromagnetic analogies in electro- and magnetostatics problemsPhys. Usp. 62 413–420 (2019)
  3. M.Ya. Agre “Multipole expansions in magnetostaticsPhys. Usp. 54 167–180 (2011)
  4. R.Z. Muratov “Some useful correspondences in classical magnetostatics, and the multipole representations of the magnetic potential of an ellipsoidPhys. Usp. 55 919–928 (2012)
  5. G.N. Gaidukov, A.A. Abramov “An interpretation of the energy conservation law for a point charge moving in a uniform electric fieldPhys. Usp. 51 163–166 (2008)
  6. V.A. Saranin “Electric field strength of charged conducting balls and the breakdown of the air gap between themPhys. Usp. 45 1287–1292 (2002)
  7. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  8. M.A. Miller “Charge and current electrostatics. Nonstationary sources of static fieldsSov. Phys. Usp. 27 69–75 (1984)
  9. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic fieldPhys. Usp. 52 937–943 (2009)
  10. V.A. Saranin “Electrostatic oscillatorsPhys. Usp. 55 700–708 (2012)
  11. V.A. Saranin, V.V. Mayer “Interaction of two charged conducting balls: theory and experimentPhys. Usp. 53 1067–1074 (2010)
  12. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  13. B.M. Bolotovskii, A.V. Serov “Features of the transition radiation fieldPhys. Usp. 52 487–493 (2009)
  14. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction mediumPhys. Usp. 52 649–654 (2009)
  15. A.M. Dykhne, A.A. Snarskii, M.I. Zhenirovskii “Stability and chaos in randomly inhomogeneous two-dimensional media and LC circuitsPhys. Usp. 47 821–828 (2004)
  16. L.I. Antonov “Macroscopic representation of the magnetization vector field in a magnetic substancePhys. Usp. 46 1203–1207 (2003)
  17. A.L. Barabanov “Angular momentum in classical electrodynamicsPhys. Usp. 36 (11) 1068–1074 (1993)
  18. S.G. Arutyunyan “Electromagnetic field lines of a point charge moving arbitrarily in vacuumSov. Phys. Usp. 29 1053–1057 (1986)
  19. N.V. Selina “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lensPhys. Usp. 65 406–414 (2022)
  20. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)Phys. Usp. 62 487–495 (2019)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions