Issues

 / 

2025

 / 

August

  

On the 100th anniversary of Sergei Ivanovich Syrovatskii's birth. Conferences and symposia


Supernovae as sources of cosmic rays

 
Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

The enormous energy release during supernova outbursts and observations of non-thermal radio emission allowed V.L. Ginzburg and S.I. Syrovatskii to substantiate more than 60 years ago the hypothesis about the key role of supernovae as sources of the main component of galactic cosmic rays. To date, multichannel observations of supernova remnants in the entire electromagnetic wavelength range have provided a wealth of data confirming the reality of proton and electron acceleration to energies of the order of 100 TeV. Several questions remain to be solved, including the problem of the origin and search for sources of the observed high-energy cosmic rays in the range from 100’TeV to 1000’PeV. Solving the problems of efficient conversion of the kinetic energy of supernova ejecta, the rotational energy of pulsars, and the energy of anisotropic plasma flows around accreting black holes into a population of relativistic particles invites kinetic simulations of nonlinear mechanisms with a broad dynamic scale range. Simulations are necessary to determine the highest energies of particles accelerated by super-Alfvenic plasma flows with frozen-in magnetic fields and collisionless shock waves. The task is to reveal the physical mechanisms of strong (superadiabatic) enhancement of magnetic turbulence required for rapid particle acceleration by the Fermi mechanism. The review presents the results of kinetic simulation and analysis of nonlinear production mechanisms of strong anisotropic magnetic turbulence and accelerated particle spectra. Recent observations of polarized X-ray synchrotron radiation from supernova remnants Tycho Brahe, Cassiopeia A, SN1006, etc. with the IXPE (Imaging X-ray Polarimetry Explorer) orbital observatory have made it possible to look inside cosmic particle accelerators using nonlinear models and understand the modification mechanisms of strong shock waves. Also discussed are the possibilities of acceleration of cosmic ray nuclei by powerful anisotropic plasma outflows in compact relativistic remnants of collapsed supernovae. Young pulsars in binary star systems, as well as accreting black holes—microquasars—can accelerate nuclei to energies significantly above a PeV.

Fulltext pdf (2.7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.03.039956
Keywords: supernovae, cosmic rays, pulsar nebulae, binary gamma-ray sources, particle acceleration mechanisms, polarized X-ray radiation
PACS: 95.30.−k, 97.60.Bw, 98.70.Sa (all)
DOI: 10.3367/UFNe.2025.03.039956
URL: https://ufn.ru/en/articles/2025/8/d/
2-s2.0-105016827969
2025PhyU...68..785B
Citation: Bykov A M "Supernovae as sources of cosmic rays" Phys. Usp. 68 785–806 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, June 2025, 5th, March 2025

Îðèãèíàë: Áûêîâ À Ì «Ñâåðõíîâûå çâ¸çäû êàê èñòî÷íèêè êîñìè÷åñêèõ ëó÷åé» ÓÔÍ 195 835–857 (2025); DOI: 10.3367/UFNr.2025.03.039956

References (209) Cited by (1) Similar articles (20) ↓

  1. A.M. Bykov “Sources of high-energy cosmic radiationPhys. Usp. 67 361–378 (2024)
  2. A.M. Bykov “Astrophysical objects with extreme energy release: observations and theoryPhys. Usp. 61 805–818 (2018)
  3. L.M. Zelenyi, H.V. Malova et alThin and superthin current sheets: journey into the depths of Syrovatskii's singularityPhys. Usp. 68 759–784 (2025)
  4. A.G. Frank “Current sheets in plasma: from theory to experimentPhys. Usp. 68 823–842 (2025)
  5. V.S. Ptuskin “The origin of cosmic raysPhys. Usp. 53 958–961 (2010)
  6. V.S. Ptuskin “On the origin of galactic cosmic raysPhys. Usp. 50 534–540 (2007)
  7. Space physics and plasma physics (on the 100th anniversary of S.I. Syrovatskii's birth) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, March 5, 2025)Phys. Usp. 68 745–746 (2025)
  8. Yu.V. Stenkin “The LHAASO project: first results and prospectsPhys. Usp. 65 980–985 (2022)
  9. N.V. Ardelyan, G.S. Bisnovatyi-Kogan, S.G. Moiseenko “Explosion mechanisms of supernovae: the magnetorotational modelPhys. Usp. 40 1076–1079 (1997)
  10. O.G. Ryazhskaya “On experiments in Underground PhysicsPhys. Usp. 56 296–304 (2013)
  11. V.D. Kuznetsov “Space-based and extra-atmospheric studies of the SunPhys. Usp. 68 807–822 (2025)
  12. E.V. Derishev, V.V. Kocharovsky, V.V. Kocharovskii “Cosmic accelerators for ultrahigh-energy particlesPhys. Usp. 50 308–315 (2007)
  13. S.V. Troitsky “Origin of high-energy astrophysical neutrinos: new results and prospectsPhys. Usp. 67 349–360 (2024)
  14. A.M. Bykov, R.A. Suris “Gamma quanta and neutrinos from space: what we can see now and what we need to see more (Scientific session of the Division of Physical Sciences, Russian Academy of Sciences, April 21, 2023)Phys. Usp. 67 347–348 (2024)
  15. M.I. Panasyuk “Greisen—Zatsepin—Kuzmin effect: top—down and bottom—up viewPhys. Usp. 61 903–911 (2018)
  16. S.V. Troitsky “Cosmic particles with energies above 1019 eV: a brief summary of resultsPhys. Usp. 56 304–310 (2013)
  17. Yu.I. Stozhkov, V.S. Ìàkhmutov, N.S. Svirzhevsky “Balloon studies of cosmic rays at the Lebedev Physical Institute, RASPhys. Usp. 65 986–994 (2022)
  18. O.G. Ryazhskaya “Creation of the FIAN Neutrino Laboratory and underground laboratoriesPhys. Usp. 61 912–920 (2018)
  19. A.S. Il’yn, A.V. Kopyev et alIntermittency in random flows and stochastic integrals of motionPhys. Usp. 68 747–758 (2025)
  20. G.S. Bisnovatyi-Kogan, S.G. Moiseenko “Gravitational waves and core-collapse supernovaePhys. Usp. 60 843–850 (2017)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions