Issues

 / 

2025

 / 

August

  

On the 100th anniversary of Sergei Ivanovich Syrovatskii's birth. Conferences and symposia


Supernovae as sources of cosmic rays

 
Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

The enormous energy release during supernova outbursts and observations of non-thermal radio emission allowed V.L. Ginzburg and S.I. Syrovatskii to substantiate more than 60 years ago the hypothesis about the key role of supernovae as sources of the main component of galactic cosmic rays. To date, multichannel observations of supernova remnants in the entire electromagnetic wavelength range have provided a wealth of data confirming the reality of proton and electron acceleration to energies of the order of 100 TeV. Several questions remain to be solved, including the problem of the origin and search for sources of the observed high-energy cosmic rays in the range from 100’TeV to 1000’PeV. Solving the problems of efficient conversion of the kinetic energy of supernova ejecta, the rotational energy of pulsars, and the energy of anisotropic plasma flows around accreting black holes into a population of relativistic particles invites kinetic simulations of nonlinear mechanisms with a broad dynamic scale range. Simulations are necessary to determine the highest energies of particles accelerated by super-Alfvenic plasma flows with frozen-in magnetic fields and collisionless shock waves. The task is to reveal the physical mechanisms of strong (superadiabatic) enhancement of magnetic turbulence required for rapid particle acceleration by the Fermi mechanism. The review presents the results of kinetic simulation and analysis of nonlinear production mechanisms of strong anisotropic magnetic turbulence and accelerated particle spectra. Recent observations of polarized X-ray synchrotron radiation from supernova remnants Tycho Brahe, Cassiopeia A, SN1006, etc. with the IXPE (Imaging X-ray Polarimetry Explorer) orbital observatory have made it possible to look inside cosmic particle accelerators using nonlinear models and understand the modification mechanisms of strong shock waves. Also discussed are the possibilities of acceleration of cosmic ray nuclei by powerful anisotropic plasma outflows in compact relativistic remnants of collapsed supernovae. Young pulsars in binary star systems, as well as accreting black holes—microquasars—can accelerate nuclei to energies significantly above a PeV.

Fulltext pdf (2.7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.03.039956
Keywords: supernovae, cosmic rays, pulsar nebulae, binary gamma-ray sources, particle acceleration mechanisms, polarized X-ray radiation
PACS: 95.30.−k, 97.60.Bw, 98.70.Sa (all)
DOI: 10.3367/UFNe.2025.03.039956
URL: https://ufn.ru/en/articles/2025/8/d/
001606309600003
2-s2.0-105016827969
2025PhyU...68..785B
Citation: Bykov A M "Supernovae as sources of cosmic rays" Phys. Usp. 68 785–806 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, June 2025, 5th, March 2025

Оригинал: Быков А М «Сверхновые звёзды как источники космических лучей» УФН 195 835–857 (2025); DOI: 10.3367/UFNr.2025.03.039956

References (209) ↓ Cited by (1) Similar articles (20)

  1. Hess V F Phys. Z. 13 1084 (1912)
  2. Skobelzyn D Z. Phys. 54 686 (1929)
  3. Skobeltzyn D V Early History Of Cosmic Ray Studies (Astrophysics and Space Science Library) Vol. 118 (Eds D V Skobeltzyn, Y Sekido, H Elliot) (Dordrecht: Springer, 1985) p. 47
  4. Anderson C D Phys. Rev. 43 491 (1933)
  5. Dorman I V Kosmicheskie Luchi: Istoricheskii Ocherk (Cosmic Rays: A Historical Essay) (Moscow: Nauka, 1981)
  6. Toptygin I N Phys. Usp. 56 417 (2013); Toptygin I N Usp. Fiz. Nauk 183 439 (2013)
  7. Lidvansky A S Phys. Usp. 67 943 (2024); Lidvansky A S Usp. Fiz. Nauk 194 999 (2024)
  8. Baade W, Zwicky F Phys. Rev. 46 76 (1934)
  9. Condon J J, Ransom S M Essential Radio Astronomy (Princeton, NJ: Princeton Univ. Press, 2016)
  10. Shklovskii I S Dokl. Akad. Nauk SSSR 90 983 (1953)
  11. Ginzburg V L Dokl. Akad. Nauk SSSR 92 1133 (1953)
  12. Ginzburg V L Usp. Fiz. Nauk 51 343 (1953)
  13. Ginzburg V L, Syrovatskii S I Sov. Phys. Usp. 3 504 (1961); Ginzburg V L, Syrovatskii S I Usp. Fiz. Nauk 71 411 (1960)
  14. Ginzburg V L, Syrovatskii S I The Origin Of Cosmic Rays (Oxford: Pergamon Press, 1964); Translated from Russian, Ginzburg V L, Syrovatskii S I Proiskhozhdenie Kosmicheskikh Luchei (Moscow: Izd. AN SSSR, 1963)
  15. Ginzburg V L, Syrovatskii S I Annu. Rev. Astron. Astrophys. 3 297 (1965)
  16. Bühler R, Blandford R Rep. Prog. Phys. 77 066901 (2014)
  17. Pshirkov M S et al Mon. Not. R. Astron. Soc. 496 5227 (2020)
  18. Fermi E Phys. Rev. 75 1169 (1949)
  19. Alfvén H Cosmical Electrodynamics (Oxford: Clarendon Press, 1950); Translated into Russian, Alfvén H Kosmicheskaya Elektrodinamika (Moscow: IL, 1952)
  20. Syrovatskii S I Usp. Fiz. Nauk 62 247 (1957)
  21. Astapov I I et al J. Exp. Theor. Phys. 134 469 (2022); Astapov I I et al Zh. Eksp. Teor. Fiz. 161 548 (2022)
  22. Treumann R A Astron. Astrophys. Rev. 17 409 (2009)
  23. Bykov A M et al Astrophys. J. 789 137 (2014)
  24. Ginzburg V L, Syrovatskii S I Sov. Phys. Usp. 7 696 (1965); Ginzburg V L, Syrovatskii S I Usp. Fiz. Nauk 84 201 (1964)
  25. Dogiel V A, Ginzburg V L Space Sci. Rev. 49 311 (1989)
  26. Hillas A M Cosmic Rays (Amsterdam: Elsevier, 1972)
  27. Axford W I, in Origin Of Cosmic Rays (Intern. Astronomical Union Symp.) Vol. 94 (Eds G Setti, G Spada, A W Wolfendale) (Dordrecht: D. Reidel, 1981) p. 339
  28. Berezinskii V S et al Astrofizika Kosmicheskikh Luchei (Astrophysics Of Cosmic Rays, Ed. V L Ginzburg) (Moscow: Nauka, 1984), translated into English, see [29]
  29. Berezinskii V S et al Astrophysics Of Cosmic Rays (Ed. V L Ginzburg) (Amsterdam: North-Holland, 1990), original edition in Russian, see [28]
  30. Hillas A M J. Phys. G 31 R95 (2005)
  31. Amato E Int. J. Mod. Phys. D 23 1430013 (2014)
  32. Grenier I A, Black J H, Strong A W Annu. Rev. Astron. Astrophys. 53 199 (2015)
  33. Lingenfelter R E Adv. Space Res. 62 2750 (2018)
  34. Aguilar M et al Phys. Rep. 894 1 (2021)
  35. Rankin J S et al Space Sci. Rev. 218 (5) 42 (2022)
  36. Panov A D, Podorozhnyi D M, Turundaevskii A N Phys. Usp. 67 639 (2024); Panov A D, Podorozhnyi D M, Turundaevskii A N Usp. Fiz. Nauk 194 681 (2024)
  37. Alfaro R et al Astropart. Phys. 167 103077 (2025)
  38. Kulikov G V, Khristiansen G B Sov. Phys. JETP 8 441 (1959); Kulikov G V, Khristiansen G B Zh. Eksp. Teor. Fiz. 35 635 (1958)
  39. Cao Z et al Phys. Rev. Lett. 132 131002 (2024)
  40. Zhen C et al (The LHAASO Collab.) arXiv:2505.14447
  41. Cao Z et al Nature 594 33 (2021)
  42. Kuznetsov M Yu et al JCAP 2024 (5) 125 (2024)
  43. Abbasi R et al Astrophys. J. 981 182 (2025)
  44. Cao Z et al Phys. Rev. Lett. 131 151001 (2023)
  45. Vecchiotti V et al arXiv:2411.11439
  46. Espinosa Castro L E et al Mon. Not. R. Astron. Soc. Lett. 543 L20 (2025); Espinosa Castro L E et al arXiv:2506.06593
  47. Buitink S et al Nature 531 70 (2016)
  48. Syrovatskii S I Comm. Astrophys. Space Phys. 3 155 (1971)
  49. Lemoine M, Waxman E JCAP 2009 (11) 009 (2009)
  50. Margutti R et al Astrophys. J. 797 107 (2014)
  51. Bykov A, Romansky V, Osipov S Universe 8 (1) 32 (2022)
  52. Ma X-H et al Chinese Phys. C 46 030001 (2022)
  53. Troitsky S V Phys. Usp. 67 349 (2024); Troitsky S V Usp. Fiz. Nauk 194 371 (2024)
  54. Lozinskaya T A Supernovae And Stellar Wind In The Interstellar Medium (New York: AIP, 1992); Translated from Russian, Lozinskaya T A Sverkhnovye Zvezdy I Zvezdnyi Veter: Vzaimodeistvie S Gazom Galaktiki (Moscow: Nauka, 1986)
  55. Branch D, Wheeler J C Supernova Explosions (Berlin: Springer-Verlag, 2017)
  56. Vink J Physics And Evolution Of Supernova Remnants (Cham: Springer, 2020)
  57. Chevalier R A Astrophys. J. 619 839 (2005)
  58. Blinnikov S Handbook Of Supernovae (Eds A W Alsabti, P Murdin) (Cham: Springer, 2017) p. 843
  59. Holland-Ashford T et al Astrophys. J. 844 84 (2017)
  60. Baade W, Zwicky F Proc. Natl. Acad. Sci. USA 20 254 (1934)
  61. Imshennik V S, Nadezhin D K Usp. Fiz. Nauk 156 561 (1988); Imshennik V S, Nadezhin D K Sov. Sci. Rev. E 8 (Pt. 1) 1 (1989)
  62. Burrows A, Wang T, Vartanyan D Astrophys. J. Lett. 964 L16 (2024)
  63. Choi L, Burrows A, Vartanyan D Phys. Rev. D 111 123038 (2025); Choi L, Burrows A, Vartanyan D arXiv:2503.07531
  64. Burrows A, Vartanyan D Nature 589 29 (2021)
  65. Nicholl M et al Nat. Astron. 4 893 (2020)
  66. Adams S M et al Astrophys. J. 778 164 (2013)
  67. Quintana A L, Wright N J, Martínez García J Mon. Not. R. Astron. Soc. 538 1367 (2025)
  68. Bykov A M, Toptygin I N Astrophys. Space Sci. 138 341 (1987)
  69. Shukurov A, Subramanian K Astrophysical Magnetic Fields: From Galaxies To The Early Universe (Cambridge: Cambridge Univ. Press, 2021)
  70. Sarbadhicary S K et al Mon. Not. R. Astron. Soc. 464 2326 (2017)
  71. Raymond J C et al Astrophys. J. 888 90 (2020)
  72. Sunyaev R et al Astron. Astrophys. 656 A132 (2021)
  73. Churazov E M et al Mon. Not. R. Astron. Soc. 513 L83 (2022)
  74. van der Laan H Mon. Not. R. Astron. Soc. 124 125 (1962)
  75. Raymond J C et al Astrophys. J. 894 108 (2020)
  76. Chomiuk L, Metzger B D, Shen K J Annu. Rev. Astron. Astrophys. 59 391 (2021)
  77. Shafter A W Astrophys. J. 834 196 (2017)
  78. H. E. S. S. Collab., Aharonian F et al Science 376 77 (2022)
  79. López-Coto R et al Astron. Astrophys. 696 A24 (2025)
  80. Zirakashvili V N, Ptuskin V S Astropart. Phys. 78 28 (2016)
  81. Murase K Phys. Rev. D 97 081301 (2018)
  82. Murase K Phys. Rev. D 109 103020 (2024)
  83. Brose R, Sushch I, Mackey J Astron. Astrophys. 699 A160 (2025); Brose R, Sushch I, Mackey J arXiv:2504.20601
  84. Chugai N N, Danziger I J Mon. Not. R. Astron. Soc. 268 173 (1994)
  85. Pessi P J et al Astron. Astrophys. 695 A142 (2025)
  86. Martí-Devesa G et al Astron. Astrophys. 686 A254 (2024)
  87. Jacobson-Galán W V et al arXiv:2505.04698; Jacobson-Galán W V et al Astrophys. J. (2025), submitted
  88. Waxman E et al Astrophys. J. 978 133 (2025)
  89. Gal-Yam A et al Astrophys. J. 639 331 (2006)
  90. Soderberg A M et al Nature 463 513 (2010)
  91. Chakraborti S et al Nat. Commun. 2 175 (2011)
  92. Margutti R et al Astrophys. J. 797 107 (2014)
  93. Bykov A M Phys. Usp. 61 805 (2018); Bykov A M Usp. Fiz. Nauk 188 894 (2018)
  94. Wang X-Y et al Phys. Rev. D 76 083009 (2007)
  95. Budnik R et al Astrophys. J. 673 928 (2008)
  96. Bykov A M et al Space Sci. Rev. 214 41 (2018)
  97. Bykov A M, Osipov S M, Romanskii V I J. Exp. Theor. Phys. 134 487 (2022); Bykov A M, Osipov S M, Romanskii V I Zh. Eksp. Teor. Fiz. 161 570 (2022)
  98. Romansky V I, Bykov A M, Osipov S M Adv. Space Res. 74 4290 (2024)
  99. Levinson A, Nakar E Phys. Rep. 866 1 (2020)
  100. Sagdeev R Z Plasma Physics And The Problem Of Controlled Thermonuclear Reactions Vol. 4 (Ed. M A Leontovich) (New York: Pergamon Press, 1961) p. 454; Translated from Russian, Sagdeev R Z Fizika Plazmy I Problema Termoyadernykh Reaktsii Vol. 4 (Ed. M A Leontovich) (Moscow: Izd. AN SSSR, 1958) p. 384
  101. Kennel C F, Edmiston J P, Hada T Collisionless Shocks In The Heliosphere: A Tutorial Review (Geophysical Monograph Ser.) Vol. 34 (Eds R G Stone, B T Tsurutani) (Washington, DC: American Geophysical Union, 1985) p. 1
  102. Sagdeev R Z Izbrannye Trudy (Selected Works) Vol. 1 Fizika Plazmy I Upravlyaemyi Termoyadernyi Sintez (Plasma Physics And Controlled Fusion) (Novosibirsk: IPTs NGU, 2024)
  103. Balogh A, Treumann R A Physics Of Collisionless Shocks: Space Plasma Shock Waves (New York: Springer, 2013)
  104. Bykov A M, Treumann R A Astron. Astrophys. Rev. 19 42 (2011)
  105. Burgess D, Scholer M Collisionless Shocks In Space Plasmas (Cambridge: Cambridge Univ. Press, 2015)
  106. Marcowith A et al Rep. Prog. Phys. 79 046901 (2016)
  107. Hockney R W, Eastwood J W Computer Simulation Using Particles (New York: McGraw-Hill, 1981); Translated into Russian, Hockney R W, Eastwood J W Chislennoe Modelirovanie Metodom Chastits (Moscow: Mir, 1987)
  108. Lipatov A S The Hybrid Multiscale Simulation Technology: An Introduction With Application To Astrophysical And Laboratory Plasmas (Berlin: Springer, 2002)
  109. Grigor’ev Yu N, Vshivkov V A, Fedoruk M P Chislennoe Modelirovanie Metodami Chastits-v-Yacheikakh (Numerical Simulation By Particle-in-Cell Methods) (Novosibirsk: Izd. SO RAN, 2004)
  110. Jones F C, Jokipii J R, Baring M G Astrophys. J. 509 238 (1998)
  111. Spitkovsky A Astrophys. J. Lett. 682 L5 (2008)
  112. Sironi L, Spitkovsky A, Arons J Astrophys. J. 771 54 (2013)
  113. Pohl M, Hoshino M, Niemiec J Prog. Part. Nucl. Phys. 111 103751 (2020)
  114. Crumley P et al Mon. Not. R. Astron. Soc. 485 5105 (2019)
  115. Romansky V I, Bykov A M, Osipov S M J. Phys. Conf. Ser. 1400 022005 (2019)
  116. Hoshino M, in Space And Astrophysical Plasma Simulation. Methods, Algorithms, And Applications (Ed. J Büchner) (Cham: Springer, 2023) p. 337
  117. Chakraborti S et al Nat. Commun. 2 175 (2011)
  118. Churazov E M, Khabibullin I I, Bykov A M Astron. Astrophys. 688 A4 (2024)
  119. Cherepashchuk A M, Dodin A V, Postnov K A Phys. Usp. 68 (10) (2025), in press; Cherepashchuk A M, Dodin A V, Postnov K A Usp. Fiz. Nauk 195 (10) (2025), in press; Cherepashchuk A M, Dodin A V, Postnov K A arXiv:2506.01106
  120. Winske D et al Space And Astrophysical Plasma Simulation. Methods, Algorithms, And Applications (Ed. J Büchner) (Cham: Springer, 2023) p. 63
  121. Burgess D et al J. Plasma Phys. 82 905820401 (2016)
  122. Kropotina J A et al Mon. Not. R. Astron. Soc. 524 2934 (2023)
  123. Kropotina Yu A et al Tech. Phys. 61 517 (2016); Kropotina Yu A et al Zh. Tekh. Fiz. 86 (4) 40 (2016)
  124. Bykov A M, Uvarov Yu A J. Exp. Theor. Phys. 88 465 (1999); Bykov A M, Uvarov Yu A Zh. Eksp. Teor. Fiz. 115 846 (1999)
  125. Park J, Caprioli D, Spitkovsky A Phys. Rev. Lett. 114 085003 (2015)
  126. van Marle A J et al Astrophys. J. 929 7 (2022)
  127. Berezhko E G, Elshin V K, Ksenofontov L T J. Exp. Theor. Phys. 82 1 (1996); Berezhko E G, Elshin V K, Ksenofontov L T Zh. Eksp. Teor. Fiz. 109 (1) 3 (1996)
  128. Zirakashvili V N, Ptuskin V S Astropart. Phys. 39-40 12 (2012)
  129. Schwartz S J, Skilling J Astron. Astrophys. 70 607 (1978)
  130. Ptuskin V S, Zirakashvili V N Adv. Space Res. 37 1898 (2006)
  131. Ellison D C, Bykov A M Astrophys. J. 731 87 (2011)
  132. Drury L O Mon. Not. R. Astron. Soc. 415 1807 (2011)
  133. Marcowith A Front. Astron. Space Sci. 11 1411076 (2025)
  134. Neronov A, Malyshev D, Semikoz D V Astron. Astrophys. 606 A22 (2017)
  135. Aharonian F et al Space Sci. Rev. 166 97 (2012)
  136. Moskalenko I V, Strong A W, Reimer O Astron. Astrophys. 338 L75 (1998)
  137. Porter T A, Jóhannesson G, Moskalenko I V Astrophys. J. Suppl. 262 (1) 30 (2022)
  138. Syrovatskii S I Annu. Rev. Astron. Astrophys. 19 163 (1981)
  139. Syrovatskii S I, Bulanov S V, Dogiel V A Itogi Nauki I Tekhniki (Results Of Science And Technology, Ser. Astronomy) Vol. 21 (Moscow: VINITI, 1982) p. 188
  140. Zelenyi L M et al Phys. Usp. 53 933 (2010); Zelenyi L M et al Usp. Fiz. Nauk 180 973 (2010)
  141. Birn J et al Space Sci. Rev. 173 49 (2012)
  142. Artemyev A et al Astrophys. J. 923 151 (2021)
  143. Arons J Space Sci. Rev. 173 341 (2012)
  144. Zrake J Astrophys. J. 823 39 (2016)
  145. Fermi E Astrophys. J. 119 1 (1954)
  146. Blandford R, Eichler D Phys. Rep. 154 1 (1987)
  147. Lemoine M Phys. Rev. Lett. 129 215101 (2022)
  148. Hoshino M Phys. Plasmas 31 052901 (2024)
  149. Ulam S M Proc. of the Fourth Berkeley Symp. on Mathematical Statistics and Probability, Univ. of California, June 20-July 30, 1960 Vol. 3 (Ed. J Neyman) (Berkeley, CA: Univ. of California Press, 1961) p. 315
  150. Zaslavskii G M, Chirikov B V Sov. Phys. Dokl. 9 989 (1965); Zaslavskii G M, Chirikov B V Dokl. Akad. Nauk SSSR 159 306 (1964)
  151. Zaslavskii G M, Chirkov B V Sov. Phys. Usp. 14 549 (1971); Zaslavskii G M, Chirkov B V Usp. Fiz. Nauk 105 3 (1971)
  152. Lieberman M A, Lichtenberg A J Phys. Rev. A 5 1852 (1972)
  153. Lichtenberg A J, Lieberman M A Regular And Chaotic Dynamics (New York: Springer, 1992)
  154. Krymskii G F Sov. Phys. Dokl. 22 327 (1977); Krymskii G F Dokl. Akad. Nauk SSSR 234 1306 (1977)
  155. Bell A R Mon. Not. R. Astron. Soc. 182 147 (1978)
  156. Axford W I, Leer E, Skadron G, in Proc. of the 15th Intern. Cosmic Ray Conf., Plovdiv Vol. 11 (Budapest: Dept. of Cosmic Rays, Central Research Institute for Physics of the Hungarian Academy of Sciences, 1977) p. 132
  157. Blandford R D, Ostriker J P Astrophys. J. 221 L29 (1978)
  158. Jones F C Astrophys. J. Suppl. 90 561 (1994)
  159. Berezhko E G, Krymskii G F Sov. Phys. Usp. 31 27 (1988); Berezhko E G, Krymskii G F Usp. Fiz. Nauk 154 49 (1988)
  160. Jones F C, Ellison D C Space Sci. Rev. 58 259 (1991)
  161. Zel’dovich Ya B, Raizer Yu P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover Publ., 2002); Translated from Russian, Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln I Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (Moscow: Nauka, 1966)
  162. Waxman E, Katz B Handbook Of Supernovae (Eds A W Alsabti, P Murdin) (Cham: Springer, 2017) p. 967
  163. Vladimirov A E, Bykov A M, Ellison D C Astrophys. J. 688 1084 (2008)
  164. Ellison D C, Eichler D Astrophys. J. 286 691 (1984)
  165. Ellison D C, Moebius E, Paschmann G Astrophys. J. 352 376 (1990)
  166. Vladimirov A Ph.D. Thesis (Raleigh, NC: North Carolina State Univ., 2009)
  167. Ellison D C, Warren D C, Bykov A M Astrophys. J. 776 46 (2013)
  168. Berezinskii V S et al Astrofizika Kosmicheskikh Luchei (Astrophysics Of Cosmic Rays, Ed. V L Ginzburg) (Moscow: Nauka, 1990), translated into English, see [29]
  169. Schure K M et al Space Sci. Rev. 173 491 (2012)
  170. Bykov A M et al Space Sci. Rev. 178 201 (2013)
  171. Bell A R Mon. Not. R. Astron. Soc. 353 550 (2004)
  172. Ginzburg V L, Syrovatskii S I Sov. Phys. JETP 18 245 (1964); Ginzburg V L, Syrovatskii S I Zh. Eksp. Teor. Fiz. 45 353 (1963)
  173. Reynolds S P, Chevalier R A Astrophys. J. 245 912 (1981)
  174. Helder E A et al Space Sci. Rev. 173 369 (2012)
  175. Reed J E et al Astrophys. J. 440 706 (1995)
  176. Slane P et al Galaxies 12 (5) 59 (2024)
  177. Mercuri A et al Astrophys. J. 986 6 (2025)
  178. Ferrazzoli R et al Astrophys. J. 945 52 (2023)
  179. Zhou P et al Astrophys. J. 957 55 (2023)
  180. Ferrazzoli R et al Astrophys. J. 967 L38 (2024)
  181. Zirakashvili V N, Ptuskin V S Astrophys. J. 678 939 (2008)
  182. Bykov A M et al Phys. Rev. D 110 023041 (2024)
  183. Aharonian F A Very High Energy Cosmic Gamma Radiation: A Crucial Window On The Extreme Universe (Singapore: World Scientific Publ., 2004)
  184. Funk S Annu. Rev. Nucl. Part. Sci 65 245 (2015)
  185. Slane P et al Space Sci. Rev. 188 187 (2015)
  186. Yang R Z, Kafexhiu E, Aharonian F Astron. Astrophys. 615 A108 (2018)
  187. Giuliani A et al Astrophys. J. 742 L30 (2011)
  188. Ackermann M et al Science 339 807 (2013)
  189. Aharonian F et al Astron. Astrophys. 464 235 (2007)
  190. Ellison D C et al Astrophys. J. 744 39 (2012)
  191. Tsuji N et al Astrophys. J. 877 96 (2019)
  192. Fukui Y et al Astrophys. J. 961 162 (2024)
  193. Reynolds S P et al Astrophys. J. 695 L149 (2009)
  194. Aharonian F, Sun X, Yang R Astron. Astrophys. 603 A7 (2017)
  195. Cao Z et al Astrophys. J. 982 L33 (2025)
  196. Archambault S et al Astrophys. J. 836 23 (2017)
  197. Wilhelm A et al Astron. Astrophys. 639 A124 (2020)
  198. Aharonian F A Astropart. Phys. 43 71 (2013)
  199. Ptuskin V, Zirakashvili V, Seo E S Astrophys. J. 718 31 (2010)
  200. Schure K M, Bell A R Mon. Not. R. Astron. Soc. 435 1174 (2013)
  201. Alfaro R et al arXiv:2503.20947
  202. Bykov A M et al Adv. Space Res. 74 4276 (2024)
  203. LHAASO Collab. arXiv:2410.08988
  204. Abeysekara A U et al Nature 562 82 (2018)
  205. H. E. S. S. Collab., Aharonian F et al Science 383 402 (2024)
  206. Alfaro R et al Astrophys. J. 976 30 (2024)
  207. Safi-Harb S et al Astrophys. J. 935 163 (2022)
  208. Kaaret P et al Astrophys. J. Lett. 961 L12 (2024)
  209. Kuzmichev L A Phys. Part Nucl. 56 297 (2025); Kuzmichev L A Fiz. Elem. Chastits Atom. Yadra 56 469 (2025)

© 1918–2026 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions