Issues

 / 

2025

 / 

May

  

Instruments and methods of investigation


Magnetically controlled spin light-emitting diode

 ,  , § , * , # , ° , & ,  ,  
Lobachevsky State University of Nizhny Novgorod (National Research University), prosp. Gagarina 23, Nizhny Novgorod, 603950, Russian Federation

The fundamental physical principles underlying the operation of basic elements of spintronics are considered, including the giant magnetoresistance effect, injection of spin-polarized charge carriers from a magnetized ferromagnetic contact, and radiative recombination in semiconductors involving spin-polarized carriers. An integrated GaAs-based structure implementing all of the above phenomena, a magnetoresistive spin light-emitting diode, has been fabricated and investigated. As an electrical circuit, the device under consideration is a magnetoresistive element and a metal/tunnel-thin dielectric/semiconductor light-emitting diode connected in series. It is shown that a magnetic field directed in the plane of the layers changes the state of the magnetoresistive element (high or low resistance) and thus allows controlling the intensity of electroluminescence. A magnetic field directed perpendicular to the plane of the layers ensures magnetization of the magnetic contact of the light-emitting diode and spin injection, accompanied by the emission of circularly polarized light. The resulting device can find itself in four stable magnetic states (high-low intensity, 'positive'—'negative' circular polarization). Such a structure can serve as a basis for magnetic recording and information transmission elements, in which four stable states form quaternary instead of binary logic.

Fulltext pdf (875 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.03.039886
Keywords: spintronics, spin injection, spin transport, magnetically controlled LEDs, spin light-emitting diodes, magnetoresistive elements
PACS: 85.70.Sq
DOI: 10.3367/UFNe.2025.03.039886
URL: https://ufn.ru/en/articles/2025/5/d/
001524725300003
2-s2.0-105009283854
2025PhyU...68..512D
Citation: Dorokhin M V, Ved’ M V, Demina P B, Kuznetsov Yu M, Kudrin A V, Zdoroveyshchev A V, Zdoroveyshchev D A, Baidus N V, Kalentyeva I L "Magnetically controlled spin light-emitting diode" Phys. Usp. 68 512–524 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, September 2024, revised: 22nd, January 2025, 17th, March 2025

Оригинал: Дорохин М В, Ведь М В, Дёмина П Б, Кузнецов Ю М, Кудрин А В, Здоровейщев А В, Здоровейщев Д А, Байдусь Н В, Калентьева И Л «Магнитоуправляемый спиновый светоизлучающий диод» УФН 195 543–556 (2025); DOI: 10.3367/UFNr.2025.03.039886

References (53) ↓ Similar articles (3)

  1. Žutić I, Fabian J, Das Sarma S Rev. Mod. Phys. 76 323 (2004)
  2. Meier F, Zakharchenya B P (Eds) Optical Orientation (Modern Problems in Condensed Matter Sciences) Vol. 8 (Amsterdam: North-Holland, 1984); Zakharchenya B P, Meier F (Eds) Opticheskaya Orientatsiya (Optical Orientation) (Leningrad: Nauka, 1989)
  3. Holub M, Bhattacharya P J. Phys. D 40 R179 (2007)
  4. Sinova J et al Rev. Mod. Phys. 87 1213 (2015)
  5. Nagaosa N et al Rev. Mod. Phys. 82 1539 (2010)
  6. Kudrin A V et al Phys. Rev. B 90 024415 (2014)
  7. Datta S Nat. Electron. 1 604 (2018)
  8. Sato S, Tanaka M, Nakane R Phys. Rev. B 102 035305 (2020)
  9. Islam Md E, Hayashida K, Akabori M AIP Advances 9 115215 (2019)
  10. Dyakonov M I cond-mat/0401369; Dyakonov M I Future Trends In Microelectronics: The Nano, The Giga, And The Ultra (Eds S Luryi, J Xu, A Zaslavsky) (Hoboken, NJ: Wiley, 2004) p. 157
  11. Awschalom D D, Flatté M E Nature Phys. 3 153 (2007)
  12. Yadav M K et al Mater. Sci. Eng. B 303 117293 (2024)
  13. Maekawa S (Ed.) Concepts In Spin Electronics (Ser. on Semiconductor Science and Technology) Vol. 13 (Oxford: Oxford Univ. Press, 2006)
  14. Aronov A G, Pikus G E Sov. Phys. Semicond. 10 698 (1976); Aronov A G, Pikus G E Fiz. Tekh. Poluprovodn. 10 1177 (1976)
  15. Young D K et al Semicond. Sci. Technol. 17 275 (2002)
  16. Crooker S A et al Science 309 2191 (2005)
  17. Yur’ev Yu V Svetovye Volny I Fotony (Light Waves And Photons) (Moscow: MFTI, 2010)
  18. Salis G et al Appl. Phys. Lett. 87 262503 (2005)
  19. Lampel G Phys. Rev. Lett. 20 491 (1968)
  20. Fiederling R et al Nature 402 787 (1999)
  21. Ohno Y et al Nature 402 790 (1999)
  22. Ennen I et al Sensors 16 904 (2016)
  23. Dagotto E Nanoscale Phase Separation And Colossal Magnetoresistance: The Physics Of Manganites And Related Compounds (Springer Ser. in Solid-State Sciences) Vol. 136 (Berlin: Springer-Verlag, 2003)
  24. Tian Y, Yan S Sci. China Phys. Mech. Astron. 56 2 (2013)
  25. Edwards D M, Mathon J, Muniz R B IEEE Trans. Magn. 27 3548 (1991)
  26. Mathon J Contemp. Phys. 32 143 (1991)
  27. Sato H et al Superlatt. Microstruct. 4 45 (1988)
  28. Baibich M N et al Phys. Rev. Lett. 61 2472 (1988)
  29. Binasch G et al Phys. Rev. B 39 4828 (1989)
  30. Bruno P Phys. Rev. B 49 13231 (1994)
  31. Milyaev M A, Naumova L I, Ustinov V V Phys. Met. Metallogr. 119 1162 (2018); Milyaev M A, Naumova L I, Ustinov V V Fiz. Met. Metalloved. 119 1224 (2018)
  32. Sharko S A et al J. Alloys Compd. 846 156474 (2020)
  33. Chung K H, Kim S N, Lim S H Thin Solid Films 650 44 (2018)
  34. Hanbicki A T et al Appl. Phys. Lett. 80 1240 (2002)
  35. Oh E et al J. Appl. Phys. 106 043515 (2009)
  36. Liang S H et al Phys. Rev. B 90 085310 (2014)
  37. Baidus N V et al Appl. Phys. Lett. 89 181118 (2006)
  38. Mustaqeem M et al Adv. Funct. Mater. 33 2213587 (2023)
  39. Appelbaum I et al Appl. Phys. Lett. 83 4571 (2003)
  40. Saha D, Basu D, Bhattacharya P Appl. Phys. Lett. 93 194104 (2008)
  41. Kudrin A V et al Tech. Phys. Lett. 37 1168 (2011); Kudrin A V et al Pis’ma Zh. Tekh. Fiz. 37 (24) 57 (2011)
  42. Sun D et al Appl. Phys. Lett. 103 042411 (2013)
  43. Sun D et al SPIN 4 1450002 (2014)
  44. Takeshi M "Magnetic-infrared-emitting diode" Patent US-4450460-A (2008)
  45. Xuan R et al "Light emitting device within magnetic field" Patent WO2009089739A1 (2009)
  46. Tae L W et al "Semiconductor light-emitting device" Patent US-10636940-B2 (2015)
  47. Dorokhin M V et al Ann. Physik 536 2300480 (2024)
  48. De Souza J P, Danilov I, Boudinov H Appl. Phys. Lett. 68 535 (1996)
  49. Ved M et al Appl. Phys. Lett. 118 092402 (2021)
  50. Livingstone A W, Turvey K, Allen J W Solid-State Electron. 16 351 (1973)
  51. Card H C, Rhoderick E H Solid-State Electron. 16 365 (1973)
  52. Card H C, Smith B L J. Appl. Phys. 42 5863 (1971)
  53. Dorokhin M V et al J. Surf. Investig. 4 390 (2010); Dorokhin M V et al Poverkhnost Rentgen. Sinkhron. Neitron. Issled. (5) 34 (2010)

© 1918–2026 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions