Issues

 / 

2025

 / 

January

  

On the 90th anniversary of the Lebedev Physics Institute of the Russian Academy of Sciences (LPI). Reviews of topical problems


Optics of plasmon-exciton nanostructures: theoretical models and physical phenomena in metal/J-aggregate systems

 ,  
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

We review the studies of a wide range of optical phenomena resulting from near-field coupling between exci„tons and localized surface plasmon-polaritons in hybrid nanostructures. Modern physical approaches and theoretical models reported here for the description of light absorption, scattering, and extinction spectra are appropriate for interpreting physical effects in nanosystems containing metals and various excitonic materials, such as molecular aggregates of organic dyes or inorganic quantum-confined semiconductor structures. Using the example of hybrid nanosystems composed of a metallic core and an outer shell of dye J-aggregate, we perform a theoretical analysis of the optical spectra behavior in the regimes of weak, strong, and ultrastrong plasmon-exciton coupling. We consider resonance and antiresonance phenomena induced by the coupling of an exciton with dipole and multipole plasmons, including a pronounced dip in light absorption, as well as the spectral band replication effect of plexcitonic nanoparticles and their dimers. In addition, we discuss the significant roles of the size-dependent permittivity of the metallic core, the effects of anisotropy and chirality of the excitonic J-aggregate shell, and the influence of an intermediate passive layer on the formation of the optical spectra of bilayer, trilayer, and multilayer nanoparticles. The review outlines the experimental and theoretical results for hybrid nanosystems of various geometrical shapes, sizes, and compositions, broadens our understanding of the physical phenomena caused by the plasmon-exciton coupling, and represents the current state of research in the optics of metalorganic nanostructures.

Fulltext pdf (3.6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.08.039742
Correspondence should be addressed to  vlebedev@lebedev.ru and  kondorskiy@lebedev.ru
Keywords: nanophotonics, optical spectra, light--matter interaction, plexcitonics, plasmon-exciton interaction, hybrid nanomaterials, core-shell nanoparticles, metal/J-aggregate nanostructures, localized surface plasmon-polaritons, delocalized Frenkel excitons
PACS: 42.25.Bs, 71.35.−y, 78.67.−n (all)
DOI: 10.3367/UFNe.2024.08.039742
URL: https://ufn.ru/en/articles/2025/1/e/
001424253700004
2-s2.0-86000177355
2025PhyU...68...46L
Citation: Lebedev V S, Kondorskiy A D "Optics of plasmon-exciton nanostructures: theoretical models and physical phenomena in metal/J-aggregate systems" Phys. Usp. 68 46–86 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, May 2024, revised: 27th, August 2024, 28th, August 2024

Оригинал: Лебедев В С, Кондорский А Д «Оптика плазмон-экситонных наноструктур: теоретические модели и физические явления в системах металл/J-агрегат» УФН 195 50–93 (2025); DOI: 10.3367/UFNr.2024.08.039742

References (352) ↓ Cited by (2) Similar articles (1)

  1. Gallop N P et al Nat. Mater. 23 88 (2024)
  2. Perego J et al Nat. Commun. 13 3504 (2022)
  3. Koduru J R, Karri R R, Mubarak N M (Eds) Hybrid Nanomaterials For Sustainable Applications: Case Studies And Applications (Amsterdam: Elsevier, 2023)
  4. Beddoes B et al Opt. Express 31 18336 (2023)
  5. Xie Y et al Polymers 15 3721 (2023)
  6. Vats G et al Adv. Mater. 35 2205459 (2023)
  7. Youngblood N et al Nat. Photon. 17 561 (2023)
  8. Kim J H et al Adv. Mater. 34 2104678 (2022)
  9. Manzhos S et al Adv. Phys. X 6 1908848 (2021)
  10. Milichko V A et al Phys. Usp. 59 727 (2016); Milichko V A et al Usp. Fiz. Nauk 186 801 (2016)
  11. Reus M A et al Adv. Opt. Mater. 12 2301008 (2024)
  12. Yang S et al J. Lumin. 270 120560 (2024)
  13. Trapani D et al Materials 15 5450 (2022)
  14. Narayan R (Ed.) Encyclopedia Of Sensors And Biosensors (Amsterdam: Elsevier, 2022)
  15. Firoozi A et al Sci. Rep. 13 11325 (2023)
  16. Ates H C et al Nat. Rev. Mater. 7 887 (2022)
  17. Rodrigues F et al Photonics 10 182 (2023)
  18. Chandrasekar R Chem. Commun. 58 3415 (2022)
  19. Davis T J, Gómez D E, Roberts A Nanophotonics 6 543 (2017)
  20. Fernandez-Bravo A et al Nat. Mater. 18 1172 (2019)
  21. Wang Z et al Laser Photon. Rev. 11 1700212 (2017)
  22. Balykin V I Phys. Usp. 61 846 (2018); Balykin V I Usp. Fiz. Nauk 188 935 (2018)
  23. Park C et al Phys. Rev. Lett. 113 113901 (2014)
  24. Kazantsev D V et al Phys. Usp. 60 259 (2017); Kazantsev D V et al Usp. Fiz. Nauk 187 277 (2017)
  25. Khodadadi M, Nozhat N, Moshiri S M M Opt. Express 28 3305 (2020)
  26. Agranovich V M, Gartstein Yu N, Litinskaya M Chem. Rev. 111 5179 (2011)
  27. Will P-A, Reineke S Handbook Of Organic Materials For Electronic And Photonic Devices (Ed. O Ostroverkhova) (Amsterdam: Elsevier, 2019) p. 695
  28. Zhou Y (Ed.) Optoelectronic Organic-Inorganic Semiconductor Heterojunctions (Boca Raton, FL: CRC Press, 2021)
  29. Klimov V Nanoplasmonics (New York: Pan Stanford Publ., 2014); Translated from Russian, Klimov V Nanoplazmonika (Moscow: Fizmatlit, 2009)
  30. Chang H et al "Plasmonic nanoparticles: basics to applications (I)" Nanotechnology For Bioapplications (Advances in Experimental Medicine and Biology) Vol. 1309 (Ed. B H Jun) (Singapore: Springer, 2021) p. 133
  31. Lindquist N C et al Rep. Prog. Phys. 75 036501 (2012)
  32. Qazi U Y, Javaid R Adv. Nanopart. 5 27 (2016)
  33. Kondorskiy A D, Lebedev V S J. Russ. Laser Res. 42 697 (2021)
  34. Tribelsky M I, Miroshnichenko A E Phys. Usp. 65 40 (2022); Tribelsky M I, Miroshnichenko A E Usp. Fiz. Nauk 192 45 (2022)
  35. Khlebtsov N G, Dykman L A, Khlebtsov B N Russ. Chem. Rev. 91 RCR5058 (2022); Khlebtsov N G, Dykman L A, Khlebtsov B N Usp. Khim. 91 RCR5058 (2022)
  36. Krasnok A E et al Phys. Usp. 56 539 (2013); Krasnok A E et al Usp. Fiz. Nauk 183 561 (2013)
  37. Lepeshov S I et al Phys. Usp. 61 1035 (2018); Lepeshov S I et al Usp. Fiz. Nauk 188 1137 (2018)
  38. Barbillon G (Ed.) Nanoplasmonics: Fundamentals And Applications (London: IntechOpen, 2017)
  39. Klimov V V Phys. Usp. 64 990 (2021); Klimov V V Usp. Fiz. Nauk 191 1044 (2021)
  40. Diedenhofen S L et al Light Sci. Appl. 4 e234 (2015)
  41. Tam F et al Nano Lett. 7 496 (2007)
  42. Liaw J-W et al Opt. Express 17 13532 (2009)
  43. Ming T et al J. Phys. Chem. Lett. 3 191 (2012)
  44. Dong J et al Nanophotonics 4 472 (2015)
  45. Lee H et al Nanophotonics 9 3089 (2020)
  46. Kneipp K et al Phys. Rev. Lett. 78 1667 (1997)
  47. Le Ru E C, Etchegoin P G Principles Of Surface-Enhanced Raman Spectroscopy And Related Plasmonic Effects (Oxford: Elsevier, 2008)
  48. Chen S et al J. Phys. Chem. C 119 5246 (2015)
  49. Khlebtsov B N et al Phys. Chem. Chem. Phys. 25 30903 (2023)
  50. Arslanagić S, Ziolkowski R W Photon. Nanostruct. Fundam. Appl. 13 80 (2015)
  51. Smirnov B M Phys. Usp. 60 1236 (2017); Smirnov B M Usp. Fiz. Nauk 187 1329 (2017)
  52. Lee C et al Chem. Rev. 121 4743 (2021)
  53. Shapiro B I Russ. Chem. Rev. 75 433 (2006); Shapiro B I Usp. Khim. 75 484 (2006)
  54. Würthner F, Kaiser T E, Saha-Möller C R Angew. Chem. Int. Ed. 50 3376 (2011)
  55. Kobayashi T (Ed.) J-Aggregates Vol. 2 (Singapore: World Scientific, 2012)
  56. Bricks J L et al Methods Appl. Fluoresc. 6 012001 (2018)
  57. Hestand N J, Spano F C Chem. Rev. 118 7069 (2018)
  58. Otsuki J J. Mater. Chem. A 6 6710 (2018)
  59. Hecht M, Würthner F Acc. Chem. Res. 54 642 (2021)
  60. Ma S et al Aggregate 2 e96 (2021)
  61. Shapiro B I et al Opt. Express 26 30324 (2018)
  62. Shapiro B I et al Quantum Electron. 48 856 (2018); Shapiro B I et al Kvantovaya Elektron. 48 856 (2018)
  63. Wiederrecht G P, Wurtz G A, Bouhelier A Chem. Phys. Lett. 461 171 (2008)
  64. Fofang N T et al Nano Lett. 8 3481 (2008)
  65. Lebedev V S et al Colloids Surf. A 326 204 (2008)
  66. Lebedev V S et al Quantum Electron. 40 246 (2010); Lebedev V S et al Kvantovaya Elektron. 40 246 (2010)
  67. Antosiewicz T J, Apell S P, Shegai T ACS Photon. 1 454 (2014)
  68. Shapiro B I et al Quantum Electron. 45 1153 (2015); Shapiro B I et al Kvantovaya Elektron. 45 1153 (2015)
  69. Todisco F et al ACS Photon. 5 143 (2018)
  70. Song T et al Nanomaterials 9 564 (2019)
  71. Watanabe K et al Chem. Rev. 106 4301 (2006)
  72. Kravets V G et al Phys. Rev. Lett. 105 246806 (2010)
  73. Kravets V G et al Nano Lett. 10 874 (2010)
  74. Singh K et al Microchem. J. 197 109888 (2024)
  75. Walters C M et al Adv. Mater. 30 1705381 (2018)
  76. Ralević U et al Appl. Surf. Sci. 434 540 (2018)
  77. Wang A X, Kong X Materials 8 3024 (2015)
  78. Sorokin A V et al J. Phys. Chem. C 119 2743 (2015)
  79. Sorokin A V et al J. Phys. Chem. C 124 10167 (2020)
  80. Lu L et al Langmuir 18 7706 (2002)
  81. Hranisavljevic J et al J. Am. Chem. Soc. 124 4536 (2002)
  82. Zhang J, Fu Y, Lakowicz J R J. Phys. Chem. C 111 50 (2007)
  83. Akhavan S et al ACS Nano 11 5430 (2017)
  84. Kabbash M E et al J. Nanomater. 2016 4819040 (2016)
  85. Weeraddana D et al J. Chem. Phys. 147 074117 (2017)
  86. Wiederrecht G P, Wurtz G A, Hranisavljevic J Nano Lett. 4 2121 (2004)
  87. Bellessa J et al Phys. Rev. B 80 033303 (2009)
  88. Yoshida A, Kometani N J. Phys. Chem. C 114 2867 (2010)
  89. Lebedev V S, Medvedev A S Quantum Electron. 42 701 (2012); Lebedev V S, Medvedev A S Kvantovaya Elektron. 42 701 (2012)
  90. Salomon A et al ChemPhysChem 14 1882 (2013)
  91. Balci S Opt. Lett. 38 4498 (2013)
  92. DeLacy B G et al Nano Lett. 15 2588 (2015)
  93. Zengin G et al Phys. Rev. Lett. 114 157401 (2015)
  94. Kondorskiy A D et al J. Russ. Laser Res. 36 175 (2015)
  95. Melnikau D et al J. Lumin. 242 118557 (2022)
  96. Bellessa J et al Phys. Rev. Lett. 93 036404 (2004)
  97. Symonds C et al New J. Phys. 10 065017 (2008)
  98. Cade N I, Ritman-Meer T, Richards D Phys. Rev. B 79 241404 (2009)
  99. Bellessa J et al Electronics 3 303 (2014)
  100. Chmereva T M, Kucherenko M G, Kurmangaleev K S Opt. Spectrosc. 120 881 (2016); Chmereva T M, Kucherenko M G, Kurmangaleev K S Opt. Spektrosk. 120 941 (2016)
  101. Matsui H Noble And Precious Metals-Properties, Nanoscale Effects And Applications (Eds M Seehra, A Bristow) (London: IntechOpen, 2017), Ch. 5
  102. Forn-Díaz P et al Rev. Mod. Phys. 91 025005 (2019)
  103. Bitton O, Gupta S N, Haran G Nanophotonics 8 559 (2019)
  104. Liu R et al Phys. Rev. B 103 235430 (2021)
  105. Kucherenko M G, Nalbandyan V M, Chmereva T M Opt. Spectrosc. 130 593 (2022); Kucherenko M G, Nalbandyan V M, Chmereva T M Opt. Spektrosk. 130 745 (2022)
  106. Kim Y et al Nanophotonics 12 413 (2023)
  107. Hirai K, Hutchison J A, Uji-i H Chem. Rev. 123 8099 (2023)
  108. Jiang P et al Opt. Express 27 16613 (2019)
  109. Tserkezis C et al Rep. Prog. Phys. 83 082401 (2020)
  110. Deng X et al Opt. Express 31 32082 (2023)
  111. Tserkezis C Phys. Rev. A 107 043707 (2023)
  112. Manjavacas A, García de Abajo F J, Nordlander P Nano Lett. 11 2318 (2011)
  113. DeLacy B G et al Opt. Express 21 19103 (2013)
  114. Schlather A E et al Nano Lett. 13 3281 (2013)
  115. Wurtz G A et al Nano Lett. 7 1297 (2007)
  116. Lebedev V S, Medvedev A S Quantum Electron. 43 1065 (2013); Lebedev V S, Medvedev A S Kvantovaya Elektron. 43 1065 (2013)
  117. Lebedev V S, Medvedev A S J. Russ. Laser Res. 34 303 (2013)
  118. Moritaka S S et al Bull. Lebedev Phys. Inst. 47 280 (2020); Moritaka S S et al Kratk. Soobshch. Fiz. Fiz. Inst. Akad. Nauk (9) 41 (2020)
  119. Moritaka S S, Lebedev V S Bull. Lebedev Phys. Inst. 50 589 (2023); Moritaka S S, Lebedev V S Kr. Soobshch. Fiz. Fiz. Inst. Akad. Nauk (12) 112 (2023)
  120. Chen H et al J. Phys. Chem. C 116 14088 (2012)
  121. Thomas R et al ACS Nano 12 402 (2018)
  122. Zengin G et al Sci. Rep. 3 3074 (2013)
  123. Simon T et al J. Phys. Chem. C 120 12226 (2016)
  124. Nan F et al Nano Lett. 15 2705 (2015)
  125. Ni W et al Nano Lett. 10 77 (2010)
  126. Lekeufack D D et al Appl. Phys. Lett. 96 253107 (2010)
  127. Melnikau D et al Nanoscale Res. Lett. 8 134 (2013)
  128. Vasa P et al EPJ Web Conf. 41 09018 (2013)
  129. Vasa P et al Nature Photon. 7 128 (2013)
  130. Vasa P, Lienau C ACS Photon. 5 2 (2018)
  131. Fain N, Ellenbogen T, Schwartz T Phys. Rev. B 100 235448 (2019)
  132. Ates S et al Opt. Lett. 45 5824 (2020)
  133. Guo J et al Nanoscale 13 15812 (2021)
  134. Dey J, Virdi A, Chandra M Nanoscale 15 17879 (2023)
  135. Sukharev M, Nitzan A J. Phys. Condens. Matter 29 443003 (2017)
  136. Manuel A P et al J. Mater. Chem. C 7 1821 (2019)
  137. Kholmicheva N et al Nanophotonics 8 613 (2019)
  138. Vasa P Adv. Phys. X 5 1749884 (2020)
  139. He Z et al Appl. Sci. 10 1774 (2020)
  140. Wei H et al Adv. Funct. Mater. 31 2100889 (2021)
  141. Törmä P, Barnes W L Rep. Prog. Phys. 78 013901 (2015)
  142. Cao E et al Nanophotonics 7 145 (2018)
  143. Han Z, Bozhevolnyi S I Rep. Prog. Phys. 76 016402 (2013)
  144. Barnes W L, Dereux A, Ebbesen T W Nature 424 824 (2003)
  145. Zhang J, Zhang L, Xu W J. Phys. D 45 113001 (2012)
  146. Raether H Surface Plasmons On Smooth And Rough Surfaces And On Gratings (Springer Tracts in Modern Physics) Vol. 111 (Berlin: Springer-Verlag, 1988)
  147. Girard C, Joachim C, Gauthier S Rep. Prog. Phys. 63 893 (2000)
  148. Bohren C F, Huffman D R Absorption And Scattering Of Light By Small Particles (Weinheim: Wiley-VCH Verlag, 1998); Translated into Russian of the 1st ed., Bohren C F, Huffman D R Pogloshchenie I Rasseyanie Sveta Malymi Chastitsami (Moscow: Mir, 1985)
  149. Hohenau A, Leitner A, Aussenegg F R Surface Plasmon Nanophotonics (Springer Series in Optical Sciences) Vol. 131 (Eds M L Brongersma, P G Kik) (Dordrecht: Springer, 2007) p. 11
  150. Koch W, Holthausen M C A Chemist’s Guide To Density Functional Theory (Weinheim: Wiley-VCH, 2001)
  151. Chateau D et al Nanoscale 7 1934 (2015)
  152. Cardinal M F et al J. Phys. Chem. C 114 10417 (2010)
  153. Melnikau D et al J. Phys. Chem. Lett. 7 354 (2016)
  154. Scarabelli L, Liz-Marzán L M ACS Nano 15 18600 (2021)
  155. Yin Z et al RSC Adv. 6 86297 (2016)
  156. Swarnapali A et al Phys. Chem. Chem. Phys. 17 21133 (2015)
  157. Gaponenko S V Introduction To Nanophotonics (Cambridge: Cambridge Univ. Press, 2010)
  158. Novotny L, Hecht B Principles Of Nano-Optics (Cambridge: Cambridge Univ. Press, 2012); Translated into Russian of the 1st ed., Novotny L, Hecht B Osnovy Nanooptiki (Moscow: Fizmatlit, 2011)
  159. Bigot J-Y et al Phys. Rev. Lett. 75 4702 (1995)
  160. Inouye H et al Phys. Rev. B 57 11334 (1998)
  161. Kreibig U, Vollmer M Optical Properties Of Metal Clusters (Springer Series in Materials Science) Vol. 25 (Berlin: Springer-Verlag, 1995)
  162. Johnson P B, Christy R W Phys. Rev. B 6 4370 (1972)
  163. Babar S, Weaver J H Appl. Opt. 54 477 (2015)
  164. Palik E D (Ed.) Handbook Of Optical Constants Of Solids II (Boston: Academic Press, 1991)
  165. Rakić A D Appl. Opt. 34 4755 (1995)
  166. Kondorskiy A D, Mekshun A V Bull. Lebedev Phys. Inst. 50 557 (2023); Kondorskiy A D, Mekshun A V Kratk. Soobshch. Fiz. Fiz. Inst. Akad. Nauk (12) 96 (2023)
  167. Kondorskiy A D, Mekshun A V J. Russ. Laser Res. 44 627 (2023)
  168. Fuchs R, Claro F Phys. Rev. B 35 3722 (1987)
  169. Ruppin R, Yatom H Phys. Status Solidi B 74 647 (1976)
  170. Aleksandrov A F, Rukhadze A A Lektsii Po Elektrodinamike Plazmopodobnykh Sred (Lecture Notes On Electrodynamics Of Plasma-Like Media) (Moscow: Izd. Mosk. Univ. Fiz. Fak. MGU, 1999)
  171. Kelly K L et al J. Phys. Chem. B 107 668 (2003)
  172. Kondorskiy A D, Lam N T, Lebedev V S J. Russ. Laser Res. 39 56 (2018)
  173. Creighton J A, Eadon D G J. Chem. Soc. Faraday Trans. 87 3881 (1991)
  174. Kometani N et al Langmuir 17 578 (2001)
  175. Mekshun A V et al Bull. Lebedev Phys. Inst. 47 276 (2020); Mekshun A V et al Kratk. Soobshch. Fiz. Fiz. Inst. Akad. Nauk (9) 34 (2020)
  176. Payne E M et al J. Phys. Chem. B 110 2150 (2006)
  177. Khlebtsov B N, Melnikov A, Khlebtsov N G J. Quant. Spectrosc. Radiat. Transfer 107 306 (2007)
  178. Zenin V A et al ACS Photon. 7 1067 (2020)
  179. Ray D, Kiselev A, Martin O J F Opt. Express 29 24056 (2021)
  180. Frenkel J Phys. Rev. 37 1276 (1931)
  181. Davydov A S Theory Of Molecular Excitons (New York: Plenum Press, 1971); Translated from Russian, Davydov A S Teoriya Molekulyarnykh Eksitonov (Moscow: Nauka, 1968)
  182. Shapiro B I Nanotechnol. Russ. 3 139 (2008); Shapiro B I Ross. Nanoteknol. 3 72 (2008)
  183. Todisco F et al ACS Nano 9 9691 (2015)
  184. Takeshima N et al Nanoscale Res. Lett. 15 15 (2020)
  185. Asanuma H et al J. Photochem. Photobiol. C 13 124 (2012)
  186. Ciardelli F, Ruggeri G, Pucci A Chem. Soc. Rev. 42 857 (2013)
  187. Shapiro B I et al Nanotechnol. Russ. 5 58 (2010); Shapiro B I et al Ross. Nanoteknol. 5 35 (2010)
  188. Kobayashi T (Ed.) J-Aggregates (Singapore: World Scientific, 1996)
  189. Brixner T et al Adv. Energy Mater. 7 1700236 (2017)
  190. Lee C C et al Chem. Soc. Rev. 38 671 (2009)
  191. Bardeen C J Annu. Rev. Phys. Chem. 65 127 (2014)
  192. McRae E G, Kasha M J. Chem. Phys. 28 721 (1958)
  193. Kasha M Physical Processes in Radiation Biology. Proc. of an Intern. Symp., Michigan State Univ., May 6-8, 1963 (Eds L Augenstein, R Mason, B Rosenberg) (New York: Academic Press, 1964) p. 17
  194. Kasha M, Rawls H R, El-Bayoumi M A Pure Appl. Chem. 11 371 (1965)
  195. Didraga C et al J. Phys. Chem. B 108 14976 (2004)
  196. Scheblykin I G et al J. Phys. Chem. B 105 4636 (2001)
  197. Moritaka S S, Lebedev V S JETP Lett. 118 792 (2023); Moritaka S S, Lebedev V S Pis’ma Zh. Eksp. Teor. Fiz. 118 794 (2023)
  198. Moritaka S S, Lebedev V S J. Chem. Phys. 160 074901 (2024)
  199. Dicke R H Phys. Rev. 93 99 (1954)
  200. Gierschner J et al J. Phys. Chem. Lett. 4 2686 (2013)
  201. Gierschner J, Park S Y J. Mater. Chem. C 1 5818 (2013)
  202. Chuang C et al Chem 5 3135 (2019)
  203. Deshmukh A P et al J. Phys. Chem. C 123 18702 (2019)
  204. Zhu T, Wan Y, Huang L Acc. Chem. Res. 50 1725 (2017)
  205. Levitz A, Marmarchi F, Henary M Photochem. Photobiol. Sci. 17 1409 (2018)
  206. Doria S et al ACS Nano 12 4556 (2018)
  207. Bogdanov V L et al JETP Lett. 53 105 (1991); Bogdanov V L et al Pis’ma Zh. Eksp. Teor. Fiz. 53 100 (1991)
  208. Wang Y J. Opt. Soc. Am. B 8 981 (1991)
  209. Zhuravlev F A et al JETP Lett. 56 260 (1992); Zhuravlev F A et al Pis’ma Zh. Eksp. Teor. Fiz. 56 264 (1992)
  210. Shelkovnikov V V et al J. Struct. Chem. 34 909 (1993); Shelkovnikov V V et al Zh. Strukt. Khim. 34 90 (1993)
  211. Gadonas R, Feller K-H, Pugzlys A Opt. Commun. 112 157 (1994)
  212. Spano F C, Knoester J Advances In Magnetic And Optical Resonance Vol. 18 (Ed. W S Warren) (New York: Academic Press, 1994) p. 117
  213. Markov R V et al Nonlinear Opt. 25 365 (2000)
  214. Shelkovnikov V V et al Opt. Spectrosc. 92 884 (2002); Shelkovnikov V V et al Opt. Spektrosk. 92 958 (2002)
  215. Shelkovnikov V V, Plekhanov A I Macro To Nano Spectroscopy (Ed. J Uddin) (Rijeka: IntechOpen, 2012) p. 317
  216. Lee Y U et al Adv. Opt. Mater. 6 1701400 (2018)
  217. Gerasimova T N et al Chem. Sustain. Dev. 8 109 (2000)
  218. Markov R V et al Quantum Electron. 31 1063 (2001); Markov R V et al Kvantovaya Elektron. 31 1063 (2001)
  219. Markov R V et al J. Exp. Theor. Phys. 99 480 (2004); Markov R V et al Zh. Eksp. Teor. Fiz. 126 549 (2004)
  220. Sasaki F, Kano T, Kobayashi S Phys. Rev. B 63 205411 (2001)
  221. Bednarz M, Knoester J J. Phys. Chem. B 105 12913 (2001)
  222. Kano H, Kobayashi T J. Chem. Phys. 116 184 (2002)
  223. Rehhagen C et al J. Phys. Chem. Lett. 11 6612 (2020)
  224. Belko N V et al J. Phys. Chem. C 126 7922 (2022)
  225. Jumbo-Nogales A et al J. Phys. Chem. Lett. 13 10198 (2022)
  226. Knoester J, Spano F C J-Aggregates (Ed. T Kobayashi) (Singapore: World Scientific, 1996) p. 111
  227. Nishimura K, Tokunaga E, Kobayashi T Chem. Phys. Lett. 395 114 (2004)
  228. Dijkstra A G, Jansen T C, Knoester J J. Chem. Phys. 128 164511 (2008)
  229. Milota F et al J. Chem. Phys. 131 054510 (2009)
  230. Abramavicius D et al Chem. Rev. 109 2350 (2009)
  231. Ginsberg N S, Cheng Y-C, Fleming G R Acc. Chem. Res. 42 1352 (2009)
  232. Bolzonello L, Fassioli F, Collini E J. Phys. Chem. Lett. 7 4996 (2016)
  233. Quenzel T et al ACS Nano 16 4693 (2022)
  234. Peruffo N, Mancin F, Collini E Adv. Opt. Mater. 11 2203010 (2023)
  235. Russo M et al Adv. Opt. Mater. 12 2400821 (2024)
  236. Fidder H, Knoester J, Wiersma D A J. Chem. Phys. 98 6564 (1993)
  237. Minoshima K et al Chem. Phys. Lett. 218 67 (1994)
  238. Gadonas R et al J. Chem. Phys. 106 8374 (1997)
  239. Hirschmann R et al Chem. Phys. Lett. 151 60 (1988)
  240. Malyshev V A, Moreno P Phys. Rev. A 53 416 (1996)
  241. Malyshev V A, Glaeske H, Feller K-H Phys. Rev. A 58 670 (1998)
  242. Glaeske H, Malyshev V A, Feller K-H Phys. Rev. A 65 033821 (2002)
  243. Klugkist J A, Malyshev V, Knoester J J. Chem. Phys. 127 164705 (2007)
  244. Klugkist J A, Malyshev V A, Knoester J J. Chem. Phys. 128 084706 (2008)
  245. Zabolotskii A A Opt. Spectrosc. 101 606 (2006); Zabolotskii A A Opt. Spektrosk. 101 644 (2006)
  246. Zabolotskii A A J. Exp. Theor. Phys. 106 404 (2008); Zabolotskii A A Zh. Eksp. Teor. Fiz. 133 466 (2008)
  247. Nesterov L A et al Opt. Spectrosc. 115 499 (2013); Nesterov L A et al Opt. Spektrosk. 115 572 (2013)
  248. Zabolotskii A A Optoelectron. Instrum. Data Process. 52 76 (2016); Zabolotskii A A Avtometriya 52 92 (2016)
  249. Boyd R W Nonlinear Optics (Amsterdam: Elsevier, 2008)
  250. Wooten F Optical Properties Of Solids (New York: Academic Press, 1972)
  251. Kondorskiy A D, Moritaka S S, Lebedev V S Opt. Express 30 4600 (2022)
  252. Kondorskiy A D Chinese Opt. Lett. 22 093602 (2024)
  253. Grynberg G, Aspect A, Fabre C Introduction To Quantum Optics: From The Semi-Classical Approach To Quantized Light (Cambridge: Cambridge Univ. Press, 2010)
  254. Meystre P, Sargent M (III) Elements Of Quantum Optics (Berlin: Springer, 2007)
  255. Abrikosov A A, Gorkov L P, Dzyaloshinski I E Methods Of Quantum Field Theory In Statistical Physics (Englewood Cliffs, NJ: Prentice-Hall, 1963); Translated from Russian, Abrikosov A A, Gorkov L P, Dzyaloshinski I E Metody Kvantovoi Teorii Polya V Statisticheskoi Fizike (Moscow: Fizmatgiz, 1962)
  256. Campa A et al Physics Of Long-Range Interacting Systems (Oxford: Oxford Univ. Press, 2014), Ch. 7
  257. White A J, Galperin M Phys. Chem. Chem. Phys. 14 13809 (2012)
  258. Zubarev D N Sov. Phys. Usp. 3 320 (1960); Zubarev D N Usp. Fiz. Nauk 71 71 (1960)
  259. Fuller K A Opt. Lett. 18 257 (1993)
  260. Aden A L, Kerker M J. Appl. Phys. 22 1242 (1951)
  261. Güttler A Ann. Physik 11 65 (1952)
  262. Ruppin R, Englman R J. Phys. C 1 630 (1968)
  263. Irimajiri A, Hanai T, Inouye A J. Theor. Biol. 78 251 (1979)
  264. Bhandari R Appl. Opt. 24 1960 (1985)
  265. Wu Z S, Wang Y P Radio Sci. 26 1393 (1991)
  266. Sinzig J, Quinten M Appl. Phys. A 58 157 (1994)
  267. Stratton J A Electromagnetic Theory (Hoboken, NJ: John Wiley and Sons, 2007); Translated into Russian of the 1st ed., Stratton J A Teoriya Elektromagnetizma (Moscow-Leningrad: Gostekhizdat, 1948)
  268. Barber P W, Hill S C Light Scattering By Particles: Computational Methods (Advanced Ser. in Applied Physics) Vol. 2 (Singapore: World Scientific, 1990)
  269. Scaife B K P Principles Of Dielectrics (Oxford: Oxford Univ. Press, 1998)
  270. Voshchinnikov N V, Farafonov V G Astrophys. Space Sci. 204 19 (1993)
  271. Wang D-S, Kerker M Phys. Rev. B 25 2433 (1982)
  272. Ambjörnsson T et al Phys. Rev. B 73 085412 (2006)
  273. Taflove A, Hagness S C Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House, 2005)
  274. Waterman P C Phys. Rev. D 3 825 (1971)
  275. Mishchenko M I, Travis L D, Lacis A A Scattering, Absorption, And Emission Of Light By Small Particles (Cambridge: Cambridge Univ. Press, 2002)
  276. Hafner Ch The Generalized Multipole Technique For Computational Electromagnetics (Boston: Artech House, 1990)
  277. Moreno E et al J. Opt. Soc. Am. A 19 101 (2002)
  278. Yurkin M A, Hoekstra A G J. Quant. Spectrosc. Radiat. Transfer 106 558 (2007)
  279. Lee J, Mal A K Appl. Math. Comput. 67 135 (1995)
  280. Nitzan A, Brus L E J. Chem. Phys. 75 2205 (1981)
  281. Gersten J, Nitzan A J. Chem. Phys. 75 1139 (1981)
  282. Gersten J, Nitzan A J. Chem. Phys. 73 3023 (1980)
  283. Shah R A et al Phys. Rev. B 88 075411 (2013)
  284. Joe Y S, Satanin A M, Kim C S Phys. Scr. 74 259 (2006)
  285. Miroshnichenko A E, Flach S, Kivshar Yu S Rev. Mod. Phys. 82 2257 (2010)
  286. Krivenkov V et al Laser Photon. Rev. 13 1800176 (2019)
  287. Fleischhauer M, Imamoglu A, Marangos J P Rev. Mod. Phys. 77 633 (2005)
  288. Peng B et al Nat. Commun. 5 5082 (2014)
  289. Limonov M F et al Nature Photon. 11 543 (2017)
  290. Gallinet B Fano Resonances In Optics And Microwaves: Physics And Applications (Springer Ser. in Optical Sciences) Vol. 219 (Eds E Kamenetskii, A Sadreev, A Miroshnichenko) (Cham: Springer, 2018) p. 109
  291. Fano U Phys. Rev. 124 1866 (1961)
  292. Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press, 1991); Translated from Russian, Landau L D, Lifshitz E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (Moscow: Nauka, 1989)
  293. Dong Z C et al Nature Photon. 4 50 (2010)
  294. Jaynes E T, Cummings F W Proc. IEEE 51 89 (1963)
  295. Moritaka S S, Lebedev V S Bull. Lebedev Phys. Intst. 51 S750 (2024); Moritaka S S, Lebedev V S Kvantovaya Elektron. 54 362 (2024)
  296. Gómez D E, Giessen H, Davis T J J. Phys. Chem. C 118 23963 (2014)
  297. Kondorskiy A D, Lebedev V S Quantum Electron. 48 1035 (2018); Kondorskiy A D, Lebedev V S Kvantovaya Elektron. 48 1035 (2018)
  298. Kondorskiy A D, Mekshun A V Bull. Lebedev Phys. Inst. 49 341 (2022); Kondorskiy A D, Mekshun A V Kratk. Soobshch. Fiz. Fiz. Inst. Akad. Nauk (10) 55 (2022)
  299. Kondorskiy A D, Lebedev V S Opt. Express 27 11783 (2019)
  300. Wiederrecht G P, Hall, J E, Bouhelier A Phys. Rev. Lett. 98 083001 (2007)
  301. Petoukhoff C E, Dani K M, O’Carroll D M Polymers 12 2141 (2020)
  302. Faucheaux J A, Fu J, Jain P K J. Phys. Chem. C 118 2710 (2014)
  303. Chen H et al J. Phys. Chem. C 116 14088 (2012)
  304. Fleischmann M, Hendra P J, McQuillan A J Chem. Phys. Lett. 26 163 (1974)
  305. Campion A, Kambhampati P Chem. Soc. Rev. 27 241 (1998)
  306. Cui L et al Sci. Rep. 5 11920 (2015)
  307. Pockrand I et al J. Chem. Phys. 70 3401 (1979)
  308. Pompa P P et al Nature Nanotechnol. 1 126 (2006)
  309. Yeh D-M et al Nanotechnology 19 345201 (2008)
  310. Dulkeith E et al Phys. Rev. Lett. 89 203002 (2002)
  311. Liu X et al Nature Photon. 9 30 (2015)
  312. Liu W et al Nano Lett. 16 1262 (2016)
  313. Pelton M, Storm S D, Leng H Nanoscale 11 14540 (2019)
  314. Khitrova G et al Nature Phys. 2 81 (2006)
  315. Wu F et al ACS Nano 15 2292 (2021)
  316. Petoukhoff C E, Dani K M, O’Carroll D M JSAP-OSA Joint Symp. 2019 Abstracts, OSA Technical Digest (Washington, DC: Optica Publ. Group, 2019), paper 18p_E208_13
  317. Xiong X et al Nanophotonics 9 257 (2020)
  318. Balci F M et al J. Phys. Chem. C 123 26571 (2019)
  319. Schwartz T et al Phys. Rev. Lett. 106 196405 (2011)
  320. Sato T et al Chem. Lett. 30 402 (2001)
  321. Wurtz G A, Hranisavljevic J, Wiederrecht G P J. Microsc. 210 340 (2003)
  322. Uwada T et al J. Phys. Chem. C 111 1549 (2007)
  323. Yoshida A, Yonezawa Y, Kometani N Langmuir 25 6683 (2009)
  324. Vujačić A et al J. Phys. Chem. C 116 4655 (2012)
  325. Laban B et al J. Phys. Chem. C 118 23393 (2014)
  326. Laban B B, Vodnik V, Vasić V Nanospectroscopy 1 5460 (2015)
  327. Gülen D J. Phys. Chem. C 114 13825 (2010)
  328. Balci S et al ACS Photon. 3 2010 (2016)
  329. Lam N T, Kondorskiy A D, Lebedev V S Bull. Lebedev Phys. Inst. 46 390 (2019); Lam N T, Kondorskiy A D, Lebedev V S Kratk. Soobshch. Fiz. Fiz. Inst. Akad. Nauk (12) 34 (2019)
  330. Yoshida A, Uchida N, Kometani N Langmuir 25 11802 (2009)
  331. Solomon M L et al Acc. Chem. Res. 53 588 (2020)
  332. Zhu J et al Nano Lett. 21 3573 (2021)
  333. He C et al Nano Lett. 23 9428 (2023)
  334. Kumar M et al ACS Appl. Nano Mater. 6 13894 (2023)
  335. Cheng Q et al Nano Lett. 23 11376 (2023)
  336. Gunnarsson L et al J. Phys. Chem. B 109 1079 (2005)
  337. Scherer P O J, Fischer S F Chem. Phys. 86 269 (1984)
  338. Misawa K et al J. Lumin. 60-61 812 (1994)
  339. Tani T et al J. Lumin. 122-123 244 (2007)
  340. Obara Y et al Int. J. Mol. Sci. 13 5851 (2012)
  341. Haverkort F, Stradomska A, Knoester J J. Phys. Chem. B 118 8877 (2014)
  342. Pugzlys A et al Int. J. Photoenergy 2006 029623 (2006)
  343. Qiu C et al Laser Photon. Rev. 4 268 (2010)
  344. Roth J, Dignam M J J. Opt. Soc. Am. 63 308 (1973)
  345. Auguié B, Le Ru E C J. Phys. Chem. C 122 19110 (2018)
  346. Tang C, Auguié B, Le Ru E C ACS Photon. 5 5002 (2018)
  347. Tang C, Auguié B, Le Ru E C Phys. Rev. A 104 033502 (2021)
  348. Auguié B, Darby B L, Le Ru E C Nanoscale 11 12177 (2019)
  349. Tang C, Auguié B, Le Ru E C Phys. Rev. B 103 085436 (2021)
  350. Kalsin A M et al Science 312 420 (2006)
  351. Kowalczyk B et al Nature Mater. 11 227 (2012)
  352. Stete F et al ACS Photon. 10 2511 (2023)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions