Issues

 / 

2024

 / 

November

  

55th anniversary of the Institute of Spectroscopy of the Russian Academy of Sciences (ISAN). Reviews of topical problems


Laser cooling of thulium atoms to ground vibrational state in an optical lattice

  a,   a, §  a, *  a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

The method of laser cooling of atoms, first implemented in the early 1980s at the Institute of Spectroscopy of the Russian Academy of Sciences (ISAN), turned out to be an exceptionally powerful tool that provided revolutionary breakthroughs in such areas as quantum sensorics, the physics of Bose—Einstein and Fermi-condensates, quantum informatics, and many others. It was precisely due to the laser cooling method that atomic fountains — the most accurate microwave clocks &mdsah; made their appearance, and impetus was lent to the area of optical frequency standards, which today have surpassed the relative error of 10−18. In this review, dedicated to the 55th anniversary of the founding of ISAN, we will present some modern methods and experimental results aimed at the development of optical clocks on thulium atoms. In addition to the review part, the paper demonstrates a new experimental protocol for the preparation of thulium atoms using sideband cooling of the spectrally narrow 506.2-nm transition. Ensembles of atoms in the initial states of clock transitions in the ground vibrational sublevel of the optical lattice have been attained.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.05.039678
Keywords: laser cooling, thulium, optical frequency standards, spectroscopy, sideband cooling, optical lattices
PACS: 06.20.−f, 37.10.De, 37.10.Jk (all)
DOI: 10.3367/UFNe.2024.05.039678
URL: https://ufn.ru/en/articles/2024/11/g/
Citation: Provorchenko D I, Tregubov D O, Golovizin A A, Kolachevsky N N "Laser cooling of thulium atoms to ground vibrational state in an optical lattice" Phys. Usp. 67 1119–1128 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, April 2024, revised: 14th, May 2024, 14th, May 2024

Оригинал: Проворченко Д И, Трегубов Д О, Головизин А А, Колачевский Н Н «Лазерное охлаждение атомов тулия до основного колебательного состояния в оптической решётке» УФН 194 1185–1195 (2024); DOI: 10.3367/UFNr.2024.05.039678

References (75) ↓ Cited by (1) Similar articles (2)

  1. Basov N G, Prokhorov A M Usp. Fiz. Nauk 57 485 (1955)
  2. Basov N G, Letokhov V S Sov. Phys. Usp. 11 855 (1969); Basov N G, Letokhov V S Usp. Fiz. Nauk 96 585 (1968)
  3. Letokhov V S, Chebotaev V P Printsipy Nelineinoi Lazernoi Spektroskopii (Principles Of Nonlinear Lazer Spectroscopy) (Moscow: Nauka, 1975)
  4. Lebedew P Astrophys. J. 31 385 (1910)
  5. Lukishova S, Masalov A, Zadkov V Europhys. News 50 (4) 15 (2019)
  6. Frisch R Z. Phys. 86 42 (1933)
  7. Hänsch T W, Schawlow A L Opt. Commun. 13 68 (1975)
  8. Dehmelt H G Bull. Am. Phys. Soc. 20 60 (1975)
  9. Andreev S V JETP Lett. 34 442 (1981); Andreev S V Pis’ma Zh. Eksp. Teor. Fiz. 34 463 (1981)
  10. Neuhauser W et al Phys. Rev. Lett. 41 233 (1978)
  11. Letokhov V S, Minogin V G Phys. Rep. 73 1 (1981)
  12. Balykin V I Phys. Usp. 52 275 (2009); Balykin V I Usp. Fiz. Nauk 179 297 (2009)
  13. Ryabtsev I I et al Phys. Usp. 59 196 (2016); Ryabtsev I I et al Usp. Fiz. Nauk 186 206 (2016)
  14. Taichenachev A V, Yudin V I, Bagayev S N Phys. Usp. 59 184 (2016); Taichenachev A V, Yudin V I, Bagayev S N Usp. Fiz. Nauk 186 193 (2016)
  15. Adams C S et al Phys. Rev. Lett. 74 3577 (1995)
  16. Ketterle W, Van Druten N J Adv. Atom. Mol. Opt. Phys. 37 181 (1996)
  17. Turlapov A V JETP Lett. 95 96 (2012); Turlapov A V Pis’ma Zh. Eksp. Teor. Fiz. 95 104 (2012)
  18. Chapovsky P L JETP Lett. 95 132 (2012); Chapovsky P L Pis’ma Zh. Eksp. Teor. Fiz. 95 148 (2012)
  19. Onofrio R Phys. Usp. 59 1129 (2016); Onofrio R Usp. Fiz. Nauk 186 1229 (2016)
  20. Diehl S et al Nature Phys. 4 878 (2008)
  21. Wynands R, Weyers S Metrologia 42 S64 (2005)
  22. Peters A, Chung K Y, Chu S Metrologia 38 25 (2001)
  23. Weyers S et al Metrologia 38 343 (2001)
  24. Bauch A et al IEEE Trans. Instrum. Meas. 36 613 (1987)
  25. Katori H, Ido T, Kuwata-Gonokami M J. Phys. Soc. Jpn. 68 2479 (1999)
  26. Dicke R H Phys. Rev. 89 472 (1953)
  27. Keller J et al J. Phys. Conf. Ser. 723 012027 (2016)
  28. Ushijima I, Takamoto M, Katori H Phys. Rev. Lett. 121 263202 (2018)
  29. Perrin H et al Europhys. Lett. 42 395 (1998)
  30. Chen J-S et al Phys. Rev. Lett. 118 053002 (2017)
  31. Seck C M et al Phys. Rev. A 93 053415 (2016)
  32. Zhang X et al Phys. Rev. Lett. 129 113202 (2022)
  33. Bothwell T et al Metrologia 56 065004 (2019)
  34. McGrew W F et al Nature 564 87 (2018)
  35. Nicholson T L et al Phys. Rev. Lett. 109 230801 (2012)
  36. Dimarcq N et al Metrologia 61 012001 (2024)
  37. Sanner C et al Nature 567 204 (2019)
  38. Kostelecký V A, Vargas A J Phys. Rev. D 98 036003 (2018)
  39. Takamoto M et al Nat. Photon. 14 411 (2020)
  40. Savalle E et al Phys. Rev. Lett. 126 051301 (2021)
  41. Wcislo P et al Nat. Astron. 1 0009 (2017)
  42. Giorgi G et al Adv. Space Res. 64 1256 (2019)
  43. Lisdat C et al Nat. Commun. 7 12443 (2016)
  44. Grotti J e al. Nature Phys. 14 437 (2018)
  45. Clivati C et al Sci. Rep. 7 40992 (2017)
  46. Cao J et al Appl. Phys. B 123 1 (2017)
  47. Semerikov I A et al Bull. Lebedev Phys. Inst. 45 337 (2018); Semerikov I A et al Kratk. Soobsch. Fiz. Fiz. Inst. Akad. Nauk 45 (11) 14 (2018)
  48. Lisdat Ch et al Phys. Rev. Research 3 L042036 (2021)
  49. Kolachevsky N N Phys. Usp. 54 863 (2011); Kolachevsky N N Usp. Fiz. Nauk 181 896 (2011)
  50. Vishnyakova G A et al Phys. Usp. 59 168 (2016); Vishnyakova G A et al Usp. Fiz. Nauk 186 176 (2016)
  51. Golovizin A et al Nat. Commun. 10 1724 (2019)
  52. Golovizin A A et al Nat. Commun. 12 5171 (2021)
  53. Katori H et al Phys. Rev. Lett. 91 173005 (2003)
  54. Taichenachev A V et al Phys. Rev. Lett. 101 193601 (2008)
  55. Katori H et al Phys. Rev. Lett. 103 153004 (2009)
  56. Fedorova E et al Phys. Rev. A 102 063114 (2020)
  57. Mishin D A et al Quantum Electron. 52 505 (2022); Mishin D A et al Kvantovaya Elektron. 52 505 (2022)
  58. Provorchenko D et al Atoms 11 (2) 30 (2023)
  59. Drever R W P et al Appl. Phys. B 31 97 (1983)
  60. Tsyganok V V et al Phys. Rev. A 107 023315 (2023)
  61. Kramida A, Ralchenko Yu, Reader J and NIST ASD Team NIST Atomic Spectra Database, Version 5.11, 2023. National Institute of Standards and Technology, Gaithersburg, MD. February 22, 2024; https://physics.nist.gov/asd
  62. Giglberger D, Penselin S Z. Phys. 199 244 (1967)
  63. Sugar J, Meggers W F, Camus P J. Res. Natl. Bur. Stand. A 77 1 (1973)
  64. Tsyganok V V et al J. Phys. B 51 165001 (2018)
  65. Gerlach W, Stern O Z. Phys. 9 349 (1922)
  66. Virgo W L Am. J. Phys. 81 936 (2013)
  67. Khlebnikov V A et al Phys. Rev. Lett. 123 213402 (2019)
  68. Blatt S et al Phys. Rev. A 80 052703 (2009)
  69. Golovizin A JETP Lett. 119 659 (2024); Golovizin A Pis’ma Zh. Eksp. Teor. Fiz. 119 645 (2024)
  70. Afanasiev A E et al Opt. Laser Technol. 148 107698 (2022)
  71. Liang D, Bowers J E Light Adv. Manufacturing 2 (1) 59 (2021)
  72. Cheng H et al APL Photon. 8 116105 (2023)
  73. Vassiliev V V, Zibrov S A, Velichansky V L Rev. Sci. Instrum. 77 013102 (2006)
  74. Newman Z L et al Optica 6 680 (2019)
  75. Hu Y et al Nat. Photon. 16 679 (2022)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions